On marginal and conditional parameters in logistic regression models
We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditiona...
Gespeichert in:
Veröffentlicht in: | Biometrika 2019-09, Vol.106 (3), p.732-739 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 3 |
container_start_page | 732 |
container_title | Biometrika |
container_volume | 106 |
creator | STANGHELLINI, ELENA DORETTI, MARCO |
description | We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables. |
doi_str_mv | 10.1093/biomet/asz019 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2429813388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48637488</jstor_id><sourcerecordid>48637488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtLl0LA9di8Jo-l1CcUutF1yGTSkmFmUnOnC_31poy4unyXw8e9B6FbSh4oMXzVxDSEaeXgh1BzhhZUSFHxmpJztCCEyIoLIS7RFUB3irKWC_S0HfHg8j6OrsdubLFPYxunmE754LIrjSEDjiPu0z7CFD3OYZ8DQGHwkNrQwzW62Lkews3fXKLPl-eP9Vu12b6-rx83lWdaTRVzngmnjSFKea4d90bWgjmlSNntQm2499JoUgupVcM0EUppx4hsPGsV40t0P_cecvo6Bphsl465XAqWCWY05VzrQlUz5XMCyGFnDzmWH78tJfYkys6i7Cyq8Hcz38GU8j8stORKlL5fggdmZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429813388</pqid></control><display><type>article</type><title>On marginal and conditional parameters in logistic regression models</title><source>Oxford Journals</source><creator>STANGHELLINI, ELENA ; DORETTI, MARCO</creator><creatorcontrib>STANGHELLINI, ELENA ; DORETTI, MARCO</creatorcontrib><description>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asz019</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Graphical representations ; Miscellanea ; Parameter sensitivity ; Random variables ; Regression analysis ; Regression models ; Sensitivity analysis</subject><ispartof>Biometrika, 2019-09, Vol.106 (3), p.732-739</ispartof><rights>2019 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</citedby><cites>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>STANGHELLINI, ELENA</creatorcontrib><creatorcontrib>DORETTI, MARCO</creatorcontrib><title>On marginal and conditional parameters in logistic regression models</title><title>Biometrika</title><description>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</description><subject>Graphical representations</subject><subject>Miscellanea</subject><subject>Parameter sensitivity</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sensitivity analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKtLl0LA9di8Jo-l1CcUutF1yGTSkmFmUnOnC_31poy4unyXw8e9B6FbSh4oMXzVxDSEaeXgh1BzhhZUSFHxmpJztCCEyIoLIS7RFUB3irKWC_S0HfHg8j6OrsdubLFPYxunmE754LIrjSEDjiPu0z7CFD3OYZ8DQGHwkNrQwzW62Lkews3fXKLPl-eP9Vu12b6-rx83lWdaTRVzngmnjSFKea4d90bWgjmlSNntQm2499JoUgupVcM0EUppx4hsPGsV40t0P_cecvo6Bphsl465XAqWCWY05VzrQlUz5XMCyGFnDzmWH78tJfYkys6i7Cyq8Hcz38GU8j8stORKlL5fggdmZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>STANGHELLINI, ELENA</creator><creator>DORETTI, MARCO</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20190901</creationdate><title>On marginal and conditional parameters in logistic regression models</title><author>STANGHELLINI, ELENA ; DORETTI, MARCO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graphical representations</topic><topic>Miscellanea</topic><topic>Parameter sensitivity</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STANGHELLINI, ELENA</creatorcontrib><creatorcontrib>DORETTI, MARCO</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STANGHELLINI, ELENA</au><au>DORETTI, MARCO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On marginal and conditional parameters in logistic regression models</atitle><jtitle>Biometrika</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>106</volume><issue>3</issue><spage>732</spage><epage>739</epage><pages>732-739</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asz019</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2019-09, Vol.106 (3), p.732-739 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2429813388 |
source | Oxford Journals |
subjects | Graphical representations Miscellanea Parameter sensitivity Random variables Regression analysis Regression models Sensitivity analysis |
title | On marginal and conditional parameters in logistic regression models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20marginal%20and%20conditional%20parameters%20in%20logistic%20regression%20models&rft.jtitle=Biometrika&rft.au=STANGHELLINI,%20ELENA&rft.date=2019-09-01&rft.volume=106&rft.issue=3&rft.spage=732&rft.epage=739&rft.pages=732-739&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asz019&rft_dat=%3Cjstor_proqu%3E48637488%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429813388&rft_id=info:pmid/&rft_jstor_id=48637488&rfr_iscdi=true |