On marginal and conditional parameters in logistic regression models

We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2019-09, Vol.106 (3), p.732-739
Hauptverfasser: STANGHELLINI, ELENA, DORETTI, MARCO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 3
container_start_page 732
container_title Biometrika
container_volume 106
creator STANGHELLINI, ELENA
DORETTI, MARCO
description We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.
doi_str_mv 10.1093/biomet/asz019
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2429813388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48637488</jstor_id><sourcerecordid>48637488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtLl0LA9di8Jo-l1CcUutF1yGTSkmFmUnOnC_31poy4unyXw8e9B6FbSh4oMXzVxDSEaeXgh1BzhhZUSFHxmpJztCCEyIoLIS7RFUB3irKWC_S0HfHg8j6OrsdubLFPYxunmE754LIrjSEDjiPu0z7CFD3OYZ8DQGHwkNrQwzW62Lkews3fXKLPl-eP9Vu12b6-rx83lWdaTRVzngmnjSFKea4d90bWgjmlSNntQm2499JoUgupVcM0EUppx4hsPGsV40t0P_cecvo6Bphsl465XAqWCWY05VzrQlUz5XMCyGFnDzmWH78tJfYkys6i7Cyq8Hcz38GU8j8stORKlL5fggdmZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429813388</pqid></control><display><type>article</type><title>On marginal and conditional parameters in logistic regression models</title><source>Oxford Journals</source><creator>STANGHELLINI, ELENA ; DORETTI, MARCO</creator><creatorcontrib>STANGHELLINI, ELENA ; DORETTI, MARCO</creatorcontrib><description>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asz019</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Graphical representations ; Miscellanea ; Parameter sensitivity ; Random variables ; Regression analysis ; Regression models ; Sensitivity analysis</subject><ispartof>Biometrika, 2019-09, Vol.106 (3), p.732-739</ispartof><rights>2019 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</citedby><cites>FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>STANGHELLINI, ELENA</creatorcontrib><creatorcontrib>DORETTI, MARCO</creatorcontrib><title>On marginal and conditional parameters in logistic regression models</title><title>Biometrika</title><description>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</description><subject>Graphical representations</subject><subject>Miscellanea</subject><subject>Parameter sensitivity</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sensitivity analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKtLl0LA9di8Jo-l1CcUutF1yGTSkmFmUnOnC_31poy4unyXw8e9B6FbSh4oMXzVxDSEaeXgh1BzhhZUSFHxmpJztCCEyIoLIS7RFUB3irKWC_S0HfHg8j6OrsdubLFPYxunmE754LIrjSEDjiPu0z7CFD3OYZ8DQGHwkNrQwzW62Lkews3fXKLPl-eP9Vu12b6-rx83lWdaTRVzngmnjSFKea4d90bWgjmlSNntQm2499JoUgupVcM0EUppx4hsPGsV40t0P_cecvo6Bphsl465XAqWCWY05VzrQlUz5XMCyGFnDzmWH78tJfYkys6i7Cyq8Hcz38GU8j8stORKlL5fggdmZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>STANGHELLINI, ELENA</creator><creator>DORETTI, MARCO</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20190901</creationdate><title>On marginal and conditional parameters in logistic regression models</title><author>STANGHELLINI, ELENA ; DORETTI, MARCO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2ac24a899077c38a3c96542a770990fe593cc698054687b2804778a206bc2d723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graphical representations</topic><topic>Miscellanea</topic><topic>Parameter sensitivity</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STANGHELLINI, ELENA</creatorcontrib><creatorcontrib>DORETTI, MARCO</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STANGHELLINI, ELENA</au><au>DORETTI, MARCO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On marginal and conditional parameters in logistic regression models</atitle><jtitle>Biometrika</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>106</volume><issue>3</issue><spage>732</spage><epage>739</epage><pages>732-739</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We derive the exact formula linking the parameters of marginal and conditional logistic regression models with binary mediators when no conditional independence assumptions can be made. The formula has the appealing property of being the sum of terms that vanish whenever parameters of the conditional models vanish, thereby recovering well-known results as particular cases. It also permits the disentangling of direct and indirect effects as well as quantifying the distortion induced by the omission of relevant covariates, opening the way to sensitivity analysis. As the parameters of the conditional models are multiplied by terms that are always bounded, the derivations may also be used to construct reasonable bounds on the parameters of interest when relevant intermediate variables are unobserved. We assume that, conditionally on a set of covariates, the data-generating process can be represented by a directed acyclic graph. We also show how the results presented here lead to the extension of path analysis to a system of binary random variables.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asz019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2019-09, Vol.106 (3), p.732-739
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2429813388
source Oxford Journals
subjects Graphical representations
Miscellanea
Parameter sensitivity
Random variables
Regression analysis
Regression models
Sensitivity analysis
title On marginal and conditional parameters in logistic regression models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20marginal%20and%20conditional%20parameters%20in%20logistic%20regression%20models&rft.jtitle=Biometrika&rft.au=STANGHELLINI,%20ELENA&rft.date=2019-09-01&rft.volume=106&rft.issue=3&rft.spage=732&rft.epage=739&rft.pages=732-739&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asz019&rft_dat=%3Cjstor_proqu%3E48637488%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429813388&rft_id=info:pmid/&rft_jstor_id=48637488&rfr_iscdi=true