Network cross-validation by edge sampling
Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting networ...
Gespeichert in:
Veröffentlicht in: | Biometrika 2020-06, Vol.107 (2), p.257-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 2 |
container_start_page | 257 |
container_title | Biometrika |
container_volume | 107 |
creator | Li, Tianxi Levina, Elizaveta Zhu, Ji |
description | Summary
While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection. |
doi_str_mv | 10.1093/biomet/asaa006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429813379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa006</oup_id><sourcerecordid>2429813379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqGwMkdi6uDWjl_xiCpeUgULzJYd21VKEgc7AfXfk5LuTPeh79xzdQC4xWiFkSRrU4fWDWudtEaIn4EMU04hYRidgwxNK0gopZfgKqX9ceSMZ2D56oafED_zKoaU4LduaquHOnS5OeTO7lyedNs3dbe7BhdeN8ndnOoCfDw-vG-e4fbt6WVzv4UVRWKADFlZWcOw0VhWxEprMWcGM2Y1Kz11njvBhNeCeF5S4gTyHGuOpta4wpIFuJvv9jF8jS4Nah_G2E2WqqCFLDEhQk7Uaqb-_o7Oqz7WrY4HhZE6xqHmONQpjkmwnAVh7P9jfwFq52L5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429813379</pqid></control><display><type>article</type><title>Network cross-validation by edge sampling</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</creator><creatorcontrib>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</creatorcontrib><description>Summary
While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa006</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Computer simulation ; Mathematical models ; Network analysis ; Nodes ; Parameters ; Resampling ; Splitting ; Statistical analysis ; Statistical methods ; Statistical models ; Tuning</subject><ispartof>Biometrika, 2020-06, Vol.107 (2), p.257-276</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</citedby><cites>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Tianxi</creatorcontrib><creatorcontrib>Levina, Elizaveta</creatorcontrib><creatorcontrib>Zhu, Ji</creatorcontrib><title>Network cross-validation by edge sampling</title><title>Biometrika</title><description>Summary
While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</description><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Network analysis</subject><subject>Nodes</subject><subject>Parameters</subject><subject>Resampling</subject><subject>Splitting</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Tuning</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqGwMkdi6uDWjl_xiCpeUgULzJYd21VKEgc7AfXfk5LuTPeh79xzdQC4xWiFkSRrU4fWDWudtEaIn4EMU04hYRidgwxNK0gopZfgKqX9ceSMZ2D56oafED_zKoaU4LduaquHOnS5OeTO7lyedNs3dbe7BhdeN8ndnOoCfDw-vG-e4fbt6WVzv4UVRWKADFlZWcOw0VhWxEprMWcGM2Y1Kz11njvBhNeCeF5S4gTyHGuOpta4wpIFuJvv9jF8jS4Nah_G2E2WqqCFLDEhQk7Uaqb-_o7Oqz7WrY4HhZE6xqHmONQpjkmwnAVh7P9jfwFq52L5</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Tianxi</creator><creator>Levina, Elizaveta</creator><creator>Zhu, Ji</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20200601</creationdate><title>Network cross-validation by edge sampling</title><author>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Network analysis</topic><topic>Nodes</topic><topic>Parameters</topic><topic>Resampling</topic><topic>Splitting</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianxi</creatorcontrib><creatorcontrib>Levina, Elizaveta</creatorcontrib><creatorcontrib>Zhu, Ji</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianxi</au><au>Levina, Elizaveta</au><au>Zhu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network cross-validation by edge sampling</atitle><jtitle>Biometrika</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>107</volume><issue>2</issue><spage>257</spage><epage>276</epage><pages>257-276</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa006</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2020-06, Vol.107 (2), p.257-276 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2429813379 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Computer simulation Mathematical models Network analysis Nodes Parameters Resampling Splitting Statistical analysis Statistical methods Statistical models Tuning |
title | Network cross-validation by edge sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20cross-validation%20by%20edge%20sampling&rft.jtitle=Biometrika&rft.au=Li,%20Tianxi&rft.date=2020-06-01&rft.volume=107&rft.issue=2&rft.spage=257&rft.epage=276&rft.pages=257-276&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa006&rft_dat=%3Cproquest_cross%3E2429813379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429813379&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa006&rfr_iscdi=true |