Network cross-validation by edge sampling

Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2020-06, Vol.107 (2), p.257-276
Hauptverfasser: Li, Tianxi, Levina, Elizaveta, Zhu, Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 257
container_title Biometrika
container_volume 107
creator Li, Tianxi
Levina, Elizaveta
Zhu, Ji
description Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.
doi_str_mv 10.1093/biomet/asaa006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429813379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa006</oup_id><sourcerecordid>2429813379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqGwMkdi6uDWjl_xiCpeUgULzJYd21VKEgc7AfXfk5LuTPeh79xzdQC4xWiFkSRrU4fWDWudtEaIn4EMU04hYRidgwxNK0gopZfgKqX9ceSMZ2D56oafED_zKoaU4LduaquHOnS5OeTO7lyedNs3dbe7BhdeN8ndnOoCfDw-vG-e4fbt6WVzv4UVRWKADFlZWcOw0VhWxEprMWcGM2Y1Kz11njvBhNeCeF5S4gTyHGuOpta4wpIFuJvv9jF8jS4Nah_G2E2WqqCFLDEhQk7Uaqb-_o7Oqz7WrY4HhZE6xqHmONQpjkmwnAVh7P9jfwFq52L5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429813379</pqid></control><display><type>article</type><title>Network cross-validation by edge sampling</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</creator><creatorcontrib>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</creatorcontrib><description>Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa006</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Computer simulation ; Mathematical models ; Network analysis ; Nodes ; Parameters ; Resampling ; Splitting ; Statistical analysis ; Statistical methods ; Statistical models ; Tuning</subject><ispartof>Biometrika, 2020-06, Vol.107 (2), p.257-276</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</citedby><cites>FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Tianxi</creatorcontrib><creatorcontrib>Levina, Elizaveta</creatorcontrib><creatorcontrib>Zhu, Ji</creatorcontrib><title>Network cross-validation by edge sampling</title><title>Biometrika</title><description>Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</description><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Network analysis</subject><subject>Nodes</subject><subject>Parameters</subject><subject>Resampling</subject><subject>Splitting</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Tuning</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqGwMkdi6uDWjl_xiCpeUgULzJYd21VKEgc7AfXfk5LuTPeh79xzdQC4xWiFkSRrU4fWDWudtEaIn4EMU04hYRidgwxNK0gopZfgKqX9ceSMZ2D56oafED_zKoaU4LduaquHOnS5OeTO7lyedNs3dbe7BhdeN8ndnOoCfDw-vG-e4fbt6WVzv4UVRWKADFlZWcOw0VhWxEprMWcGM2Y1Kz11njvBhNeCeF5S4gTyHGuOpta4wpIFuJvv9jF8jS4Nah_G2E2WqqCFLDEhQk7Uaqb-_o7Oqz7WrY4HhZE6xqHmONQpjkmwnAVh7P9jfwFq52L5</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Tianxi</creator><creator>Levina, Elizaveta</creator><creator>Zhu, Ji</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20200601</creationdate><title>Network cross-validation by edge sampling</title><author>Li, Tianxi ; Levina, Elizaveta ; Zhu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-50d9cdb51ba19c3d9dd165b155da58f4ef6e757fa73f6843e70f61a6043ebe2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Network analysis</topic><topic>Nodes</topic><topic>Parameters</topic><topic>Resampling</topic><topic>Splitting</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianxi</creatorcontrib><creatorcontrib>Levina, Elizaveta</creatorcontrib><creatorcontrib>Zhu, Ji</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianxi</au><au>Levina, Elizaveta</au><au>Zhu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network cross-validation by edge sampling</atitle><jtitle>Biometrika</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>107</volume><issue>2</issue><spage>257</spage><epage>276</epage><pages>257-276</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa006</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2020-06, Vol.107 (2), p.257-276
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2429813379
source Oxford University Press Journals All Titles (1996-Current)
subjects Computer simulation
Mathematical models
Network analysis
Nodes
Parameters
Resampling
Splitting
Statistical analysis
Statistical methods
Statistical models
Tuning
title Network cross-validation by edge sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20cross-validation%20by%20edge%20sampling&rft.jtitle=Biometrika&rft.au=Li,%20Tianxi&rft.date=2020-06-01&rft.volume=107&rft.issue=2&rft.spage=257&rft.epage=276&rft.pages=257-276&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa006&rft_dat=%3Cproquest_cross%3E2429813379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429813379&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa006&rfr_iscdi=true