Lyapunov optimization for non-generic one-dimensional expanding Markov maps
For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We a...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-09, Vol.40 (9), p.2571-2592 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2592 |
---|---|
container_issue | 9 |
container_start_page | 2571 |
container_title | Ergodic theory and dynamical systems |
container_volume | 40 |
creator | SHINODA, MAO TAKAHASI, HIROKI |
description | For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols. |
doi_str_mv | 10.1017/etds.2019.6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429669493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_6</cupid><sourcerecordid>2429669493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9mbycpRStYsWNrkOaR0ntJGMyFeuvd0oLblzdxf3O4fAhdElgQoDIG9fbMqmBNBNxhEaEiQYzRuQxGgFhFNNbLk_RWSkrAKBE8hF6nm91t4npq0pdH9rwo_uQYuVTrmKKeOmiy8FUKTpsQ-tiGb56XbnvTkcb4rJ60fljSLe6K-foxOt1cReHO0bvD_dv00c8f509Te_m2FDBe8yFM9LSRvqFMRa8rrn0wzSgptESBGdeCMoXVnCQ1kvtAZiQwuhac3CMjtHVvrfL6XPjSq9WaZOHWUXVrG6EaFhDB-p6T5mcSsnOqy6HVuetIqB2ttTOltrZUmKg8YHW7SIHu3R_pf_xv-bJbW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429669493</pqid></control><display><type>article</type><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><source>Cambridge University Press Journals Complete</source><creator>SHINODA, MAO ; TAKAHASI, HIROKI</creator><creatorcontrib>SHINODA, MAO ; TAKAHASI, HIROKI</creatorcontrib><description>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.6</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Optimization ; Orbits ; Original Article ; Perturbation</subject><ispartof>Ergodic theory and dynamical systems, 2020-09, Vol.40 (9), p.2571-2592</ispartof><rights>Cambridge University Press, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</citedby><cites>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719000063/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>SHINODA, MAO</creatorcontrib><creatorcontrib>TAKAHASI, HIROKI</creatorcontrib><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</description><subject>Optimization</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Perturbation</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9mbycpRStYsWNrkOaR0ntJGMyFeuvd0oLblzdxf3O4fAhdElgQoDIG9fbMqmBNBNxhEaEiQYzRuQxGgFhFNNbLk_RWSkrAKBE8hF6nm91t4npq0pdH9rwo_uQYuVTrmKKeOmiy8FUKTpsQ-tiGb56XbnvTkcb4rJ60fljSLe6K-foxOt1cReHO0bvD_dv00c8f509Te_m2FDBe8yFM9LSRvqFMRa8rrn0wzSgptESBGdeCMoXVnCQ1kvtAZiQwuhac3CMjtHVvrfL6XPjSq9WaZOHWUXVrG6EaFhDB-p6T5mcSsnOqy6HVuetIqB2ttTOltrZUmKg8YHW7SIHu3R_pf_xv-bJbW8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>SHINODA, MAO</creator><creator>TAKAHASI, HIROKI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><author>SHINODA, MAO ; TAKAHASI, HIROKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Optimization</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHINODA, MAO</creatorcontrib><creatorcontrib>TAKAHASI, HIROKI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHINODA, MAO</au><au>TAKAHASI, HIROKI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>40</volume><issue>9</issue><spage>2571</spage><epage>2592</epage><pages>2571-2592</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.6</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2020-09, Vol.40 (9), p.2571-2592 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2429669493 |
source | Cambridge University Press Journals Complete |
subjects | Optimization Orbits Original Article Perturbation |
title | Lyapunov optimization for non-generic one-dimensional expanding Markov maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20optimization%20for%20non-generic%20one-dimensional%20expanding%20Markov%20maps&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=SHINODA,%20MAO&rft.date=2020-09-01&rft.volume=40&rft.issue=9&rft.spage=2571&rft.epage=2592&rft.pages=2571-2592&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.6&rft_dat=%3Cproquest_cross%3E2429669493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429669493&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_6&rfr_iscdi=true |