Lyapunov optimization for non-generic one-dimensional expanding Markov maps

For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-09, Vol.40 (9), p.2571-2592
Hauptverfasser: SHINODA, MAO, TAKAHASI, HIROKI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2592
container_issue 9
container_start_page 2571
container_title Ergodic theory and dynamical systems
container_volume 40
creator SHINODA, MAO
TAKAHASI, HIROKI
description For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.
doi_str_mv 10.1017/etds.2019.6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429669493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_6</cupid><sourcerecordid>2429669493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9mbycpRStYsWNrkOaR0ntJGMyFeuvd0oLblzdxf3O4fAhdElgQoDIG9fbMqmBNBNxhEaEiQYzRuQxGgFhFNNbLk_RWSkrAKBE8hF6nm91t4npq0pdH9rwo_uQYuVTrmKKeOmiy8FUKTpsQ-tiGb56XbnvTkcb4rJ60fljSLe6K-foxOt1cReHO0bvD_dv00c8f509Te_m2FDBe8yFM9LSRvqFMRa8rrn0wzSgptESBGdeCMoXVnCQ1kvtAZiQwuhac3CMjtHVvrfL6XPjSq9WaZOHWUXVrG6EaFhDB-p6T5mcSsnOqy6HVuetIqB2ttTOltrZUmKg8YHW7SIHu3R_pf_xv-bJbW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429669493</pqid></control><display><type>article</type><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><source>Cambridge University Press Journals Complete</source><creator>SHINODA, MAO ; TAKAHASI, HIROKI</creator><creatorcontrib>SHINODA, MAO ; TAKAHASI, HIROKI</creatorcontrib><description>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.6</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Optimization ; Orbits ; Original Article ; Perturbation</subject><ispartof>Ergodic theory and dynamical systems, 2020-09, Vol.40 (9), p.2571-2592</ispartof><rights>Cambridge University Press, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</citedby><cites>FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719000063/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>SHINODA, MAO</creatorcontrib><creatorcontrib>TAKAHASI, HIROKI</creatorcontrib><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</description><subject>Optimization</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Perturbation</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9mbycpRStYsWNrkOaR0ntJGMyFeuvd0oLblzdxf3O4fAhdElgQoDIG9fbMqmBNBNxhEaEiQYzRuQxGgFhFNNbLk_RWSkrAKBE8hF6nm91t4npq0pdH9rwo_uQYuVTrmKKeOmiy8FUKTpsQ-tiGb56XbnvTkcb4rJ60fljSLe6K-foxOt1cReHO0bvD_dv00c8f509Te_m2FDBe8yFM9LSRvqFMRa8rrn0wzSgptESBGdeCMoXVnCQ1kvtAZiQwuhac3CMjtHVvrfL6XPjSq9WaZOHWUXVrG6EaFhDB-p6T5mcSsnOqy6HVuetIqB2ttTOltrZUmKg8YHW7SIHu3R_pf_xv-bJbW8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>SHINODA, MAO</creator><creator>TAKAHASI, HIROKI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</title><author>SHINODA, MAO ; TAKAHASI, HIROKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-56ec7d397fbccd0fa257f38503c9a70654f6635bd6507df7af004676ca2a50e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Optimization</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHINODA, MAO</creatorcontrib><creatorcontrib>TAKAHASI, HIROKI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHINODA, MAO</au><au>TAKAHASI, HIROKI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov optimization for non-generic one-dimensional expanding Markov maps</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>40</volume><issue>9</issue><spage>2571</spage><epage>2592</epage><pages>2571-2592</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.6</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2020-09, Vol.40 (9), p.2571-2592
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2429669493
source Cambridge University Press Journals Complete
subjects Optimization
Orbits
Original Article
Perturbation
title Lyapunov optimization for non-generic one-dimensional expanding Markov maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20optimization%20for%20non-generic%20one-dimensional%20expanding%20Markov%20maps&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=SHINODA,%20MAO&rft.date=2020-09-01&rft.volume=40&rft.issue=9&rft.spage=2571&rft.epage=2592&rft.pages=2571-2592&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.6&rft_dat=%3Cproquest_cross%3E2429669493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429669493&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_6&rfr_iscdi=true