Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials
A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recur...
Gespeichert in:
Veröffentlicht in: | Thermal science 2017, Vol.21 (2), p.813-817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 2 |
container_start_page | 813 |
container_title | Thermal science |
container_volume | 21 |
creator | Wu, Guo-Cheng Baleanu, Dumitru Luo, Wei-Hua |
description | A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
nema |
doi_str_mv | 10.2298/TSCI160416301W |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429667721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429667721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-708c3edab5f4a41356f43f055dd161b7b060775e92ce56c880ad99c78da1777a3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWKtb1wHXU2_emWUpvqAgaMXlkMkDU6aTmrRC_70pdePq3PNxuBwOQrcEZpS2-n71vnghEjiRDMjnGZpQxnijqj1HE2CCN61m8hJdlbIGkFJrNUFv89EMhxILTgGHbOwupkrwmMZmiKM3GbsYwr5UjHv_ZX5iygX3pniHK5q7tIlmxNs0HMbjOZRrdBGq-Js_naKPx4fV4rlZvj69LObLxjJQu0aBtsw704vADSdMyMBZACGcI5L0qgcJSgnfUuuFtFqDcW1rlXaGKKUMm6K7099tTt97X3bdOu1zLV86ymkrpVKU1NTslLI5lZJ96LY5bkw-dAS6427d_93YL_SHYLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429667721</pqid></control><display><type>article</type><title>Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Guo-Cheng ; Baleanu, Dumitru ; Luo, Wei-Hua</creator><creatorcontrib>Wu, Guo-Cheng ; Baleanu, Dumitru ; Luo, Wei-Hua</creatorcontrib><description>A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI160416301W</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Computer simulation ; Diffusion ; Integral equations ; Linearity ; Nonlinear analysis ; Nonlinearity ; Polynomials ; Porous media ; Taylor series</subject><ispartof>Thermal science, 2017, Vol.21 (2), p.813-817</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-708c3edab5f4a41356f43f055dd161b7b060775e92ce56c880ad99c78da1777a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Luo, Wei-Hua</creatorcontrib><title>Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials</title><title>Thermal science</title><description>A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
nema</description><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Integral equations</subject><subject>Linearity</subject><subject>Nonlinear analysis</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Porous media</subject><subject>Taylor series</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkEtLAzEUhYMoWKtb1wHXU2_emWUpvqAgaMXlkMkDU6aTmrRC_70pdePq3PNxuBwOQrcEZpS2-n71vnghEjiRDMjnGZpQxnijqj1HE2CCN61m8hJdlbIGkFJrNUFv89EMhxILTgGHbOwupkrwmMZmiKM3GbsYwr5UjHv_ZX5iygX3pniHK5q7tIlmxNs0HMbjOZRrdBGq-Js_naKPx4fV4rlZvj69LObLxjJQu0aBtsw704vADSdMyMBZACGcI5L0qgcJSgnfUuuFtFqDcW1rlXaGKKUMm6K7099tTt97X3bdOu1zLV86ymkrpVKU1NTslLI5lZJ96LY5bkw-dAS6427d_93YL_SHYLI</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wu, Guo-Cheng</creator><creator>Baleanu, Dumitru</creator><creator>Luo, Wei-Hua</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials</title><author>Wu, Guo-Cheng ; Baleanu, Dumitru ; Luo, Wei-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-708c3edab5f4a41356f43f055dd161b7b060775e92ce56c880ad99c78da1777a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Integral equations</topic><topic>Linearity</topic><topic>Nonlinear analysis</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Porous media</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Luo, Wei-Hua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guo-Cheng</au><au>Baleanu, Dumitru</au><au>Luo, Wei-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials</atitle><jtitle>Thermal science</jtitle><date>2017</date><risdate>2017</risdate><volume>21</volume><issue>2</issue><spage>813</spage><epage>817</epage><pages>813-817</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI160416301W</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2017, Vol.21 (2), p.813-817 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_journals_2429667721 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Computer simulation Diffusion Integral equations Linearity Nonlinear analysis Nonlinearity Polynomials Porous media Taylor series |
title | Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20fractional%20non-linear%20diffusion%20behaviors%20based%20on%20Adomian%20polynomials&rft.jtitle=Thermal%20science&rft.au=Wu,%20Guo-Cheng&rft.date=2017&rft.volume=21&rft.issue=2&rft.spage=813&rft.epage=817&rft.pages=813-817&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI160416301W&rft_dat=%3Cproquest_cross%3E2429667721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429667721&rft_id=info:pmid/&rfr_iscdi=true |