Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System
This paper studies the take-out route delivery problem (TRDP) with order allocation and unilateral soft time window constraints. The TRDP considers the order allocation and delivery route optimization in the delivery service process. The TRDP is a challenging version of vehicle routing problem. In o...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-16 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Jing, Yun Liu, Renhua Tian, Zhiqiang Sun, Guofeng Ma, Yawen |
description | This paper studies the take-out route delivery problem (TRDP) with order allocation and unilateral soft time window constraints. The TRDP considers the order allocation and delivery route optimization in the delivery service process. The TRDP is a challenging version of vehicle routing problem. In order to solve this problem, this paper aims to minimize the total cost of delivery, builds an optimization model of this problem by using cumulative time, and adds time dimension in order allocation and path optimization dimensions. It can not only track the real-time location of delivery personnel but also record the delivery personnel to perform a certain task. The main algorithm is the dynamic allocation algorithm designed from the perspective of dispatch efficiency, and the subalgorithm is the improved genetic algorithm. Finally, some experiments are designed to verify the effectiveness of the established model and the designed algorithm, the order allocation and route optimization are calculated with/without the consideration of traffic jam, and the results show that the algorithm can generate better solution in each scene. |
doi_str_mv | 10.1155/2020/7248492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429651852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429651852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-7006e2386ae7170f685c83a0ed8e6a74d637651f8d1968932d1b64b5e9293d3c3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AiCs7pzbMEPGpdfjRpepT5EwaVOcFbyZpXl9klM2mV-dfb0cGOnl7e45MEvi-Kzgm-IYTzEcUUj1KayCSjB9GAcMFiTpL0sDtjmsSEsvfj6CSEJcaUcCIHUT2FAMqXC-QsGjvntbGqMV2jrEb5ujEr89sPXIVyr8Gj27p25R7dQW2-wW_Q1LUNoJdaWWvsBzIWzdQnxHnboNdNaGB1Gh1Vqg5wtqvD6O3hfjZ-iif54_P4dhKXTOAmTjEWQJkUClKS4kpIXkqmMGgJQqWJFiwVnFRSk0zIjFFN5iKZc8hoxjQr2TC67N9de_fVQmiKpWu97b4saEKz7q7ktFPXvSq9C8FDVay9WSm_KQgutnkW2zyLXZ4dv-r5wlitfsx_-qLX0Bmo1F6TLJXdIv4AHZh-Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429651852</pqid></control><display><type>article</type><title>Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Jing, Yun ; Liu, Renhua ; Tian, Zhiqiang ; Sun, Guofeng ; Ma, Yawen</creator><contributor>Damodaran, Purushothaman ; Purushothaman Damodaran</contributor><creatorcontrib>Jing, Yun ; Liu, Renhua ; Tian, Zhiqiang ; Sun, Guofeng ; Ma, Yawen ; Damodaran, Purushothaman ; Purushothaman Damodaran</creatorcontrib><description>This paper studies the take-out route delivery problem (TRDP) with order allocation and unilateral soft time window constraints. The TRDP considers the order allocation and delivery route optimization in the delivery service process. The TRDP is a challenging version of vehicle routing problem. In order to solve this problem, this paper aims to minimize the total cost of delivery, builds an optimization model of this problem by using cumulative time, and adds time dimension in order allocation and path optimization dimensions. It can not only track the real-time location of delivery personnel but also record the delivery personnel to perform a certain task. The main algorithm is the dynamic allocation algorithm designed from the perspective of dispatch efficiency, and the subalgorithm is the improved genetic algorithm. Finally, some experiments are designed to verify the effectiveness of the established model and the designed algorithm, the order allocation and route optimization are calculated with/without the consideration of traffic jam, and the results show that the algorithm can generate better solution in each scene.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/7248492</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Customer satisfaction ; Customers ; Delivery services ; Distribution costs ; Efficiency ; Food ; Food quality ; Genetic algorithms ; Integer programming ; Linear programming ; Objectives ; Optimization ; Personnel ; Quarantine ; Route planning ; Traffic congestion ; Traffic jams ; Vehicle routing ; Windows (intervals)</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-16</ispartof><rights>Copyright © 2020 Guofeng Sun et al.</rights><rights>Copyright © 2020 Guofeng Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-7006e2386ae7170f685c83a0ed8e6a74d637651f8d1968932d1b64b5e9293d3c3</citedby><cites>FETCH-LOGICAL-c360t-7006e2386ae7170f685c83a0ed8e6a74d637651f8d1968932d1b64b5e9293d3c3</cites><orcidid>0000-0003-3461-7095 ; 0000-0002-5898-6795 ; 0000-0001-8739-6690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Damodaran, Purushothaman</contributor><contributor>Purushothaman Damodaran</contributor><creatorcontrib>Jing, Yun</creatorcontrib><creatorcontrib>Liu, Renhua</creatorcontrib><creatorcontrib>Tian, Zhiqiang</creatorcontrib><creatorcontrib>Sun, Guofeng</creatorcontrib><creatorcontrib>Ma, Yawen</creatorcontrib><title>Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System</title><title>Mathematical problems in engineering</title><description>This paper studies the take-out route delivery problem (TRDP) with order allocation and unilateral soft time window constraints. The TRDP considers the order allocation and delivery route optimization in the delivery service process. The TRDP is a challenging version of vehicle routing problem. In order to solve this problem, this paper aims to minimize the total cost of delivery, builds an optimization model of this problem by using cumulative time, and adds time dimension in order allocation and path optimization dimensions. It can not only track the real-time location of delivery personnel but also record the delivery personnel to perform a certain task. The main algorithm is the dynamic allocation algorithm designed from the perspective of dispatch efficiency, and the subalgorithm is the improved genetic algorithm. Finally, some experiments are designed to verify the effectiveness of the established model and the designed algorithm, the order allocation and route optimization are calculated with/without the consideration of traffic jam, and the results show that the algorithm can generate better solution in each scene.</description><subject>Algorithms</subject><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Delivery services</subject><subject>Distribution costs</subject><subject>Efficiency</subject><subject>Food</subject><subject>Food quality</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Personnel</subject><subject>Quarantine</subject><subject>Route planning</subject><subject>Traffic congestion</subject><subject>Traffic jams</subject><subject>Vehicle routing</subject><subject>Windows (intervals)</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0c9LwzAUB_AiCs7pzbMEPGpdfjRpepT5EwaVOcFbyZpXl9klM2mV-dfb0cGOnl7e45MEvi-Kzgm-IYTzEcUUj1KayCSjB9GAcMFiTpL0sDtjmsSEsvfj6CSEJcaUcCIHUT2FAMqXC-QsGjvntbGqMV2jrEb5ujEr89sPXIVyr8Gj27p25R7dQW2-wW_Q1LUNoJdaWWvsBzIWzdQnxHnboNdNaGB1Gh1Vqg5wtqvD6O3hfjZ-iif54_P4dhKXTOAmTjEWQJkUClKS4kpIXkqmMGgJQqWJFiwVnFRSk0zIjFFN5iKZc8hoxjQr2TC67N9de_fVQmiKpWu97b4saEKz7q7ktFPXvSq9C8FDVay9WSm_KQgutnkW2zyLXZ4dv-r5wlitfsx_-qLX0Bmo1F6TLJXdIv4AHZh-Hg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jing, Yun</creator><creator>Liu, Renhua</creator><creator>Tian, Zhiqiang</creator><creator>Sun, Guofeng</creator><creator>Ma, Yawen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3461-7095</orcidid><orcidid>https://orcid.org/0000-0002-5898-6795</orcidid><orcidid>https://orcid.org/0000-0001-8739-6690</orcidid></search><sort><creationdate>2020</creationdate><title>Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System</title><author>Jing, Yun ; Liu, Renhua ; Tian, Zhiqiang ; Sun, Guofeng ; Ma, Yawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-7006e2386ae7170f685c83a0ed8e6a74d637651f8d1968932d1b64b5e9293d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Delivery services</topic><topic>Distribution costs</topic><topic>Efficiency</topic><topic>Food</topic><topic>Food quality</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Personnel</topic><topic>Quarantine</topic><topic>Route planning</topic><topic>Traffic congestion</topic><topic>Traffic jams</topic><topic>Vehicle routing</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Yun</creatorcontrib><creatorcontrib>Liu, Renhua</creatorcontrib><creatorcontrib>Tian, Zhiqiang</creatorcontrib><creatorcontrib>Sun, Guofeng</creatorcontrib><creatorcontrib>Ma, Yawen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Yun</au><au>Liu, Renhua</au><au>Tian, Zhiqiang</au><au>Sun, Guofeng</au><au>Ma, Yawen</au><au>Damodaran, Purushothaman</au><au>Purushothaman Damodaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper studies the take-out route delivery problem (TRDP) with order allocation and unilateral soft time window constraints. The TRDP considers the order allocation and delivery route optimization in the delivery service process. The TRDP is a challenging version of vehicle routing problem. In order to solve this problem, this paper aims to minimize the total cost of delivery, builds an optimization model of this problem by using cumulative time, and adds time dimension in order allocation and path optimization dimensions. It can not only track the real-time location of delivery personnel but also record the delivery personnel to perform a certain task. The main algorithm is the dynamic allocation algorithm designed from the perspective of dispatch efficiency, and the subalgorithm is the improved genetic algorithm. Finally, some experiments are designed to verify the effectiveness of the established model and the designed algorithm, the order allocation and route optimization are calculated with/without the consideration of traffic jam, and the results show that the algorithm can generate better solution in each scene.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/7248492</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3461-7095</orcidid><orcidid>https://orcid.org/0000-0002-5898-6795</orcidid><orcidid>https://orcid.org/0000-0001-8739-6690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-16 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2429651852 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Algorithms Customer satisfaction Customers Delivery services Distribution costs Efficiency Food Food quality Genetic algorithms Integer programming Linear programming Objectives Optimization Personnel Quarantine Route planning Traffic congestion Traffic jams Vehicle routing Windows (intervals) |
title | Research on Coordination and Optimization of Order Allocation and Delivery Route Planning in Take-Out System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Coordination%20and%20Optimization%20of%20Order%20Allocation%20and%20Delivery%20Route%20Planning%20in%20Take-Out%20System&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Jing,%20Yun&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/7248492&rft_dat=%3Cproquest_cross%3E2429651852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429651852&rft_id=info:pmid/&rfr_iscdi=true |