Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics

Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-08, Vol.30 (31), p.n/a
Hauptverfasser: Choi, Yeon Sik, Koo, Jahyun, Lee, Young Joong, Lee, Geumbee, Avila, Raudel, Ying, Hanze, Reeder, Jonathan, Hambitzer, Leonhard, Im, Kyungtaek, Kim, Jungwon, Lee, Kyung‐Mi, Cheng, Jianjun, Huang, Yonggang, Kang, Seung‐Kyun, Rogers, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 30
creator Choi, Yeon Sik
Koo, Jahyun
Lee, Young Joong
Lee, Geumbee
Avila, Raudel
Ying, Hanze
Reeder, Jonathan
Hambitzer, Leonhard
Im, Kyungtaek
Kim, Jungwon
Lee, Kyung‐Mi
Cheng, Jianjun
Huang, Yonggang
Kang, Seung‐Kyun
Rogers, John A.
description Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses. Synthetic procedures, degradation kinetics, water absorption properties, and water barrier characteristics of bioresorbable polyanhydride are presented. This polymer, as encapsulation layers in water‐soluble electronic devices, can be used to define the functional lifetimes by controlling the coating thickness and polymer chemistry. In vitro permeability encapsulation and in vivo biocompatibility studies support the potential use of this material in temporary biomedical implants with designs for both acute and chronic operation.
doi_str_mv 10.1002/adfm.202000941
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429645422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429645422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-766c8689afd2f7c483abe03008622ed4e28d27013c62e8c47357ad4c992edc853</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPWycfTbLHqq0K9eNQwVtIk6ymbDc12SL7791SqUdP88I8zwy8CF0SGBEAem1ctR5RoABQcnKEBkQQUTCg6viQyfspOst5BUCkZHyAnm9CdP4jGWeWtcevse5M89m5FJzP2GQ8bazZ5G1t2hAbPDedTxlXMeFFMk0OvmnxtPa2TbEJNp-jk8rU2V_8ziF6m00Xtw_F_OX-8XYyLywjkhRSCKuEKk3laCUtV8wsPTAAJSj1jnuqHJVAmBXUK8slG0vjuC3LfmvVmA3R1f7uJsWvrc-tXsVtavqXmnJaCj7mlPbUaE_ZFHNOvtKbFNYmdZqA3nWmd53pQ2e9UO6F71D77h9aT-5mT3_uD9oEcEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429645422</pqid></control><display><type>article</type><title>Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics</title><source>Access via Wiley Online Library</source><creator>Choi, Yeon Sik ; Koo, Jahyun ; Lee, Young Joong ; Lee, Geumbee ; Avila, Raudel ; Ying, Hanze ; Reeder, Jonathan ; Hambitzer, Leonhard ; Im, Kyungtaek ; Kim, Jungwon ; Lee, Kyung‐Mi ; Cheng, Jianjun ; Huang, Yonggang ; Kang, Seung‐Kyun ; Rogers, John A.</creator><creatorcontrib>Choi, Yeon Sik ; Koo, Jahyun ; Lee, Young Joong ; Lee, Geumbee ; Avila, Raudel ; Ying, Hanze ; Reeder, Jonathan ; Hambitzer, Leonhard ; Im, Kyungtaek ; Kim, Jungwon ; Lee, Kyung‐Mi ; Cheng, Jianjun ; Huang, Yonggang ; Kang, Seung‐Kyun ; Rogers, John A.</creatorcontrib><description>Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses. Synthetic procedures, degradation kinetics, water absorption properties, and water barrier characteristics of bioresorbable polyanhydride are presented. This polymer, as encapsulation layers in water‐soluble electronic devices, can be used to define the functional lifetimes by controlling the coating thickness and polymer chemistry. In vitro permeability encapsulation and in vivo biocompatibility studies support the potential use of this material in temporary biomedical implants with designs for both acute and chronic operation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000941</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Biocompatibility ; biocompatible polymer ; Biodegradability ; biodegradable polymer ; Biodegradation ; Biomedical materials ; bioresorbable polymer ; Chain scission ; Electronic systems ; Electronics ; Encapsulation ; Erosion mechanisms ; hydrophobic polymer ; In vivo methods and tests ; Materials science ; Mechanical properties ; Photopolymerization ; Polyanhydrides ; Polymers ; Saline solutions ; Submerging ; Surgical implants ; Toxicity ; transient electronics</subject><ispartof>Advanced functional materials, 2020-08, Vol.30 (31), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-766c8689afd2f7c483abe03008622ed4e28d27013c62e8c47357ad4c992edc853</citedby><cites>FETCH-LOGICAL-c3171-766c8689afd2f7c483abe03008622ed4e28d27013c62e8c47357ad4c992edc853</cites><orcidid>0000-0003-3813-3442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000941$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000941$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choi, Yeon Sik</creatorcontrib><creatorcontrib>Koo, Jahyun</creatorcontrib><creatorcontrib>Lee, Young Joong</creatorcontrib><creatorcontrib>Lee, Geumbee</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Ying, Hanze</creatorcontrib><creatorcontrib>Reeder, Jonathan</creatorcontrib><creatorcontrib>Hambitzer, Leonhard</creatorcontrib><creatorcontrib>Im, Kyungtaek</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Lee, Kyung‐Mi</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Kang, Seung‐Kyun</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><title>Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics</title><title>Advanced functional materials</title><description>Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses. Synthetic procedures, degradation kinetics, water absorption properties, and water barrier characteristics of bioresorbable polyanhydride are presented. This polymer, as encapsulation layers in water‐soluble electronic devices, can be used to define the functional lifetimes by controlling the coating thickness and polymer chemistry. In vitro permeability encapsulation and in vivo biocompatibility studies support the potential use of this material in temporary biomedical implants with designs for both acute and chronic operation.</description><subject>Aqueous solutions</subject><subject>Biocompatibility</subject><subject>biocompatible polymer</subject><subject>Biodegradability</subject><subject>biodegradable polymer</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>bioresorbable polymer</subject><subject>Chain scission</subject><subject>Electronic systems</subject><subject>Electronics</subject><subject>Encapsulation</subject><subject>Erosion mechanisms</subject><subject>hydrophobic polymer</subject><subject>In vivo methods and tests</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Photopolymerization</subject><subject>Polyanhydrides</subject><subject>Polymers</subject><subject>Saline solutions</subject><subject>Submerging</subject><subject>Surgical implants</subject><subject>Toxicity</subject><subject>transient electronics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPWycfTbLHqq0K9eNQwVtIk6ymbDc12SL7791SqUdP88I8zwy8CF0SGBEAem1ctR5RoABQcnKEBkQQUTCg6viQyfspOst5BUCkZHyAnm9CdP4jGWeWtcevse5M89m5FJzP2GQ8bazZ5G1t2hAbPDedTxlXMeFFMk0OvmnxtPa2TbEJNp-jk8rU2V_8ziF6m00Xtw_F_OX-8XYyLywjkhRSCKuEKk3laCUtV8wsPTAAJSj1jnuqHJVAmBXUK8slG0vjuC3LfmvVmA3R1f7uJsWvrc-tXsVtavqXmnJaCj7mlPbUaE_ZFHNOvtKbFNYmdZqA3nWmd53pQ2e9UO6F71D77h9aT-5mT3_uD9oEcEI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Choi, Yeon Sik</creator><creator>Koo, Jahyun</creator><creator>Lee, Young Joong</creator><creator>Lee, Geumbee</creator><creator>Avila, Raudel</creator><creator>Ying, Hanze</creator><creator>Reeder, Jonathan</creator><creator>Hambitzer, Leonhard</creator><creator>Im, Kyungtaek</creator><creator>Kim, Jungwon</creator><creator>Lee, Kyung‐Mi</creator><creator>Cheng, Jianjun</creator><creator>Huang, Yonggang</creator><creator>Kang, Seung‐Kyun</creator><creator>Rogers, John A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3813-3442</orcidid></search><sort><creationdate>20200801</creationdate><title>Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics</title><author>Choi, Yeon Sik ; Koo, Jahyun ; Lee, Young Joong ; Lee, Geumbee ; Avila, Raudel ; Ying, Hanze ; Reeder, Jonathan ; Hambitzer, Leonhard ; Im, Kyungtaek ; Kim, Jungwon ; Lee, Kyung‐Mi ; Cheng, Jianjun ; Huang, Yonggang ; Kang, Seung‐Kyun ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-766c8689afd2f7c483abe03008622ed4e28d27013c62e8c47357ad4c992edc853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Biocompatibility</topic><topic>biocompatible polymer</topic><topic>Biodegradability</topic><topic>biodegradable polymer</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>bioresorbable polymer</topic><topic>Chain scission</topic><topic>Electronic systems</topic><topic>Electronics</topic><topic>Encapsulation</topic><topic>Erosion mechanisms</topic><topic>hydrophobic polymer</topic><topic>In vivo methods and tests</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Photopolymerization</topic><topic>Polyanhydrides</topic><topic>Polymers</topic><topic>Saline solutions</topic><topic>Submerging</topic><topic>Surgical implants</topic><topic>Toxicity</topic><topic>transient electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yeon Sik</creatorcontrib><creatorcontrib>Koo, Jahyun</creatorcontrib><creatorcontrib>Lee, Young Joong</creatorcontrib><creatorcontrib>Lee, Geumbee</creatorcontrib><creatorcontrib>Avila, Raudel</creatorcontrib><creatorcontrib>Ying, Hanze</creatorcontrib><creatorcontrib>Reeder, Jonathan</creatorcontrib><creatorcontrib>Hambitzer, Leonhard</creatorcontrib><creatorcontrib>Im, Kyungtaek</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Lee, Kyung‐Mi</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Kang, Seung‐Kyun</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yeon Sik</au><au>Koo, Jahyun</au><au>Lee, Young Joong</au><au>Lee, Geumbee</au><au>Avila, Raudel</au><au>Ying, Hanze</au><au>Reeder, Jonathan</au><au>Hambitzer, Leonhard</au><au>Im, Kyungtaek</au><au>Kim, Jungwon</au><au>Lee, Kyung‐Mi</au><au>Cheng, Jianjun</au><au>Huang, Yonggang</au><au>Kang, Seung‐Kyun</au><au>Rogers, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics</atitle><jtitle>Advanced functional materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses. Synthetic procedures, degradation kinetics, water absorption properties, and water barrier characteristics of bioresorbable polyanhydride are presented. This polymer, as encapsulation layers in water‐soluble electronic devices, can be used to define the functional lifetimes by controlling the coating thickness and polymer chemistry. In vitro permeability encapsulation and in vivo biocompatibility studies support the potential use of this material in temporary biomedical implants with designs for both acute and chronic operation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000941</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3813-3442</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-08, Vol.30 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2429645422
source Access via Wiley Online Library
subjects Aqueous solutions
Biocompatibility
biocompatible polymer
Biodegradability
biodegradable polymer
Biodegradation
Biomedical materials
bioresorbable polymer
Chain scission
Electronic systems
Electronics
Encapsulation
Erosion mechanisms
hydrophobic polymer
In vivo methods and tests
Materials science
Mechanical properties
Photopolymerization
Polyanhydrides
Polymers
Saline solutions
Submerging
Surgical implants
Toxicity
transient electronics
title Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Polyanhydrides%20as%20Encapsulation%20Layers%20for%20Transient%20Electronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Choi,%20Yeon%20Sik&rft.date=2020-08-01&rft.volume=30&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000941&rft_dat=%3Cproquest_cross%3E2429645422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429645422&rft_id=info:pmid/&rfr_iscdi=true