A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program
Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl gro...
Gespeichert in:
Veröffentlicht in: | Chemical & pharmaceutical bulletin 2020/08/01, Vol.68(8), pp.737-741 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 8 |
container_start_page | 737 |
container_title | Chemical & pharmaceutical bulletin |
container_volume | 68 |
creator | Watanabe, Kazuki Kawashima, Yusuke Mukai, Chisato Takagi, Tatsuya Suwa, Yukinori Tian, Yu-Shi Kawashita, Norihito |
description | Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl group, but not for a vinyl group. Here, we constructed two computational models for allenylcyclopentane-alkyne and vinylcyclopentane-alkyne, and obtained their reaction pathways using density functional theory (DFT). From the reaction pathways, we confirmed that the former model has a much lower reaction energy than the latter. We also found that the molecular orbitals of the transition state structure at the rate-controlling step contribute significantly to the difference in reactivity between the two models. |
doi_str_mv | 10.1248/cpb.c20-00144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429557931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429557931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-60fa8554d42926e3593fce7f43c1997c150696224351c184bbb3af96429cb5f3</originalsourceid><addsrcrecordid>eNpFkc1v1DAQxSMEotvCkSuyxDnF30mOq6VdKhWBqoWr5TiTXa8SO9hZoUj88TjZsr3MWJrfvHl6zrIPBN8SysvPZqhvDcU5xoTzV9mKMF7kglL2OlthjKucMsmususYjxhTgQv2NrtitOCkInyV_V2jje8HHWz0DtUw_gFwaDwA2kym87pp7Gi9i8i3aN114KYuR9o16Jednws0gBu1g4h-Ruv26Au4aMcJ3Z-cmXd1h3YH8GFa9rZPT9_Qj-D3Qffvsjet7iK8f-432e7-brf5mj9-3z5s1o-5kVyMucStLoXgDacVlcBExVoDRcuZIVVVGCKwrCSlnAliSMnruma6rWTCTS1adpN9OssOwf8-QRzV0Z9C8hUVTYwQRcVIovIzZYKPMUCrhmB7HSZFsJqjVilqlaJWS9SJ__iseqp7aC70_2wTsD0DaWqN7rzrrIOX2yYW5gC9VRQvorLE5dxU-qMiFU6YKCSWMiltzkrHOOo9XE7pMFrTwWJMlqqcy8Xgy_SggwLH_gGh5agH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429557931</pqid></control><display><type>article</type><title>A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program</title><source>MEDLINE</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Watanabe, Kazuki ; Kawashima, Yusuke ; Mukai, Chisato ; Takagi, Tatsuya ; Suwa, Yukinori ; Tian, Yu-Shi ; Kawashita, Norihito</creator><creatorcontrib>Watanabe, Kazuki ; Kawashima, Yusuke ; Mukai, Chisato ; Takagi, Tatsuya ; Suwa, Yukinori ; Tian, Yu-Shi ; Kawashita, Norihito ; Kanazawa University ; aGraduate School of Pharmaceutical Sciences ; cFaculty of Science and Engineering ; Kindai University ; Osaka University ; bOrganization of Frontier Science and Innovation</creatorcontrib><description>Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl group, but not for a vinyl group. Here, we constructed two computational models for allenylcyclopentane-alkyne and vinylcyclopentane-alkyne, and obtained their reaction pathways using density functional theory (DFT). From the reaction pathways, we confirmed that the former model has a much lower reaction energy than the latter. We also found that the molecular orbitals of the transition state structure at the rate-controlling step contribute significantly to the difference in reactivity between the two models.</description><identifier>ISSN: 0009-2363</identifier><identifier>EISSN: 1347-5223</identifier><identifier>DOI: 10.1248/cpb.c20-00144</identifier><identifier>PMID: 32741914</identifier><language>eng</language><publisher>Japan: The Pharmaceutical Society of Japan</publisher><subject>Alkynes ; Alkynes - chemistry ; allenylcyclopentane ; Catalysis ; Chemical synthesis ; Computer applications ; Cycloaddition ; Cycloaddition Reaction - methods ; Cyclopentanes - chemistry ; Density Functional Theory ; energy diagram ; global reaction route mapping ; Heavy metals ; Mathematical models ; metallocycle ; Molecular orbitals ; Molecular structure ; Reagents ; Rhodium ; Rhodium - chemistry ; Thermodynamics ; transition metal catalyst ; Transition metals ; Vinyl Compounds - chemistry</subject><ispartof>Chemical and Pharmaceutical Bulletin, 2020/08/01, Vol.68(8), pp.737-741</ispartof><rights>2020 The Pharmaceutical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-60fa8554d42926e3593fce7f43c1997c150696224351c184bbb3af96429cb5f3</citedby><cites>FETCH-LOGICAL-c645t-60fa8554d42926e3593fce7f43c1997c150696224351c184bbb3af96429cb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32741914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Kazuki</creatorcontrib><creatorcontrib>Kawashima, Yusuke</creatorcontrib><creatorcontrib>Mukai, Chisato</creatorcontrib><creatorcontrib>Takagi, Tatsuya</creatorcontrib><creatorcontrib>Suwa, Yukinori</creatorcontrib><creatorcontrib>Tian, Yu-Shi</creatorcontrib><creatorcontrib>Kawashita, Norihito</creatorcontrib><creatorcontrib>Kanazawa University</creatorcontrib><creatorcontrib>aGraduate School of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>cFaculty of Science and Engineering</creatorcontrib><creatorcontrib>Kindai University</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>bOrganization of Frontier Science and Innovation</creatorcontrib><title>A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program</title><title>Chemical & pharmaceutical bulletin</title><addtitle>Chem. Pharm. Bull.</addtitle><description>Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl group, but not for a vinyl group. Here, we constructed two computational models for allenylcyclopentane-alkyne and vinylcyclopentane-alkyne, and obtained their reaction pathways using density functional theory (DFT). From the reaction pathways, we confirmed that the former model has a much lower reaction energy than the latter. We also found that the molecular orbitals of the transition state structure at the rate-controlling step contribute significantly to the difference in reactivity between the two models.</description><subject>Alkynes</subject><subject>Alkynes - chemistry</subject><subject>allenylcyclopentane</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Computer applications</subject><subject>Cycloaddition</subject><subject>Cycloaddition Reaction - methods</subject><subject>Cyclopentanes - chemistry</subject><subject>Density Functional Theory</subject><subject>energy diagram</subject><subject>global reaction route mapping</subject><subject>Heavy metals</subject><subject>Mathematical models</subject><subject>metallocycle</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Reagents</subject><subject>Rhodium</subject><subject>Rhodium - chemistry</subject><subject>Thermodynamics</subject><subject>transition metal catalyst</subject><subject>Transition metals</subject><subject>Vinyl Compounds - chemistry</subject><issn>0009-2363</issn><issn>1347-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1v1DAQxSMEotvCkSuyxDnF30mOq6VdKhWBqoWr5TiTXa8SO9hZoUj88TjZsr3MWJrfvHl6zrIPBN8SysvPZqhvDcU5xoTzV9mKMF7kglL2OlthjKucMsmususYjxhTgQv2NrtitOCkInyV_V2jje8HHWz0DtUw_gFwaDwA2kym87pp7Gi9i8i3aN114KYuR9o16Jednws0gBu1g4h-Ruv26Au4aMcJ3Z-cmXd1h3YH8GFa9rZPT9_Qj-D3Qffvsjet7iK8f-432e7-brf5mj9-3z5s1o-5kVyMucStLoXgDacVlcBExVoDRcuZIVVVGCKwrCSlnAliSMnruma6rWTCTS1adpN9OssOwf8-QRzV0Z9C8hUVTYwQRcVIovIzZYKPMUCrhmB7HSZFsJqjVilqlaJWS9SJ__iseqp7aC70_2wTsD0DaWqN7rzrrIOX2yYW5gC9VRQvorLE5dxU-qMiFU6YKCSWMiltzkrHOOo9XE7pMFrTwWJMlqqcy8Xgy_SggwLH_gGh5agH</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Watanabe, Kazuki</creator><creator>Kawashima, Yusuke</creator><creator>Mukai, Chisato</creator><creator>Takagi, Tatsuya</creator><creator>Suwa, Yukinori</creator><creator>Tian, Yu-Shi</creator><creator>Kawashita, Norihito</creator><general>The Pharmaceutical Society of Japan</general><general>Pharmaceutical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20200801</creationdate><title>A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program</title><author>Watanabe, Kazuki ; Kawashima, Yusuke ; Mukai, Chisato ; Takagi, Tatsuya ; Suwa, Yukinori ; Tian, Yu-Shi ; Kawashita, Norihito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-60fa8554d42926e3593fce7f43c1997c150696224351c184bbb3af96429cb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkynes</topic><topic>Alkynes - chemistry</topic><topic>allenylcyclopentane</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Computer applications</topic><topic>Cycloaddition</topic><topic>Cycloaddition Reaction - methods</topic><topic>Cyclopentanes - chemistry</topic><topic>Density Functional Theory</topic><topic>energy diagram</topic><topic>global reaction route mapping</topic><topic>Heavy metals</topic><topic>Mathematical models</topic><topic>metallocycle</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Reagents</topic><topic>Rhodium</topic><topic>Rhodium - chemistry</topic><topic>Thermodynamics</topic><topic>transition metal catalyst</topic><topic>Transition metals</topic><topic>Vinyl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Kazuki</creatorcontrib><creatorcontrib>Kawashima, Yusuke</creatorcontrib><creatorcontrib>Mukai, Chisato</creatorcontrib><creatorcontrib>Takagi, Tatsuya</creatorcontrib><creatorcontrib>Suwa, Yukinori</creatorcontrib><creatorcontrib>Tian, Yu-Shi</creatorcontrib><creatorcontrib>Kawashita, Norihito</creatorcontrib><creatorcontrib>Kanazawa University</creatorcontrib><creatorcontrib>aGraduate School of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>cFaculty of Science and Engineering</creatorcontrib><creatorcontrib>Kindai University</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>bOrganization of Frontier Science and Innovation</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Chemical & pharmaceutical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Kazuki</au><au>Kawashima, Yusuke</au><au>Mukai, Chisato</au><au>Takagi, Tatsuya</au><au>Suwa, Yukinori</au><au>Tian, Yu-Shi</au><au>Kawashita, Norihito</au><aucorp>Kanazawa University</aucorp><aucorp>aGraduate School of Pharmaceutical Sciences</aucorp><aucorp>cFaculty of Science and Engineering</aucorp><aucorp>Kindai University</aucorp><aucorp>Osaka University</aucorp><aucorp>bOrganization of Frontier Science and Innovation</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program</atitle><jtitle>Chemical & pharmaceutical bulletin</jtitle><addtitle>Chem. Pharm. Bull.</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>68</volume><issue>8</issue><spage>737</spage><epage>741</epage><pages>737-741</pages><issn>0009-2363</issn><eissn>1347-5223</eissn><abstract>Cycloaddition catalyzed by transition metals such as rhodium (I) is an important way to synthesize functionalized molecules in medicinal chemistry. When the reagent has a saturated ring containing more than five carbons (or heavy atoms), the reaction can progress when the compound has an allenyl group, but not for a vinyl group. Here, we constructed two computational models for allenylcyclopentane-alkyne and vinylcyclopentane-alkyne, and obtained their reaction pathways using density functional theory (DFT). From the reaction pathways, we confirmed that the former model has a much lower reaction energy than the latter. We also found that the molecular orbitals of the transition state structure at the rate-controlling step contribute significantly to the difference in reactivity between the two models.</abstract><cop>Japan</cop><pub>The Pharmaceutical Society of Japan</pub><pmid>32741914</pmid><doi>10.1248/cpb.c20-00144</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2363 |
ispartof | Chemical and Pharmaceutical Bulletin, 2020/08/01, Vol.68(8), pp.737-741 |
issn | 0009-2363 1347-5223 |
language | eng |
recordid | cdi_proquest_journals_2429557931 |
source | MEDLINE; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Alkynes Alkynes - chemistry allenylcyclopentane Catalysis Chemical synthesis Computer applications Cycloaddition Cycloaddition Reaction - methods Cyclopentanes - chemistry Density Functional Theory energy diagram global reaction route mapping Heavy metals Mathematical models metallocycle Molecular orbitals Molecular structure Reagents Rhodium Rhodium - chemistry Thermodynamics transition metal catalyst Transition metals Vinyl Compounds - chemistry |
title | A Comparison between the Cycloadditions of Allenyl- and Vinyl-Cyclopentanes Using Density Functional Theory and GRRM Program |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20between%20the%20Cycloadditions%20of%20Allenyl-%20and%20Vinyl-Cyclopentanes%20Using%20Density%20Functional%20Theory%20and%20GRRM%20Program&rft.jtitle=Chemical%20&%20pharmaceutical%20bulletin&rft.au=Watanabe,%20Kazuki&rft.aucorp=Kanazawa%20University&rft.date=2020-08-01&rft.volume=68&rft.issue=8&rft.spage=737&rft.epage=741&rft.pages=737-741&rft.issn=0009-2363&rft.eissn=1347-5223&rft_id=info:doi/10.1248/cpb.c20-00144&rft_dat=%3Cproquest_cross%3E2429557931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429557931&rft_id=info:pmid/32741914&rfr_iscdi=true |