Using Neural Networks in Atomic Energy Thermophysical Problems (Review)

The prospects for the implementation of modern digital technologies based on artificial neural networks (ANN) in the nuclear facility safety analysis are considered and the review of works on this topic is presented. The review includes publications in which neural networks are used in experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal engineering 2020-08, Vol.67 (8), p.497-508
Hauptverfasser: Zabirov, A. R., Smirnova, A. A., Feofilaktova, Yu. M., Shevchenko, R. A., Shevchenko, S. A., Yashnikov, D. A., Soloviev, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 8
container_start_page 497
container_title Thermal engineering
container_volume 67
creator Zabirov, A. R.
Smirnova, A. A.
Feofilaktova, Yu. M.
Shevchenko, R. A.
Shevchenko, S. A.
Yashnikov, D. A.
Soloviev, S. L.
description The prospects for the implementation of modern digital technologies based on artificial neural networks (ANN) in the nuclear facility safety analysis are considered and the review of works on this topic is presented. The review includes publications in which neural networks are used in experimental studies and their result processing in such areas as heat transfer and hydrodynamics in single-phase media, in phase transformations, and hydrogen safety. Computational methods of machine learning based on artificial neural networks are successfully used to identify the relationship between the input and output system parameters without building complex mathematical computational models as well as for systems in which processes are characterized by nonlinearity and data uncertainty. However, a unified approach to the substantiation and assessment of the applicability of such methods has not yet been formed. As a result of the analysis, the need is shown for special requirements in order to assess the applicability of these technologies and substantiation (verification and validation) of calculation models based on neural networks.
doi_str_mv 10.1134/S0040601520080108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429456568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429456568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-afae6cec317d3fa1e6569ea3ba6fb81485d4f061ab32913a0fa4af4916d0ee183</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAFz1EZ_afybGUWoWiou05bNLZNrVJ6m5q6bd3QwUP4ukxvN97A4-xS4RbRCHv3gEkaEDFARJASI5YD5VSsRaAx6zX2XHnn7Iz71fhlBJVj41nvqwX0TNtnVkHaXeN-_BRWUeDtqnKIhrV5Bb7aLokVzWb5d6XRQBfXZOvqfLR9Rt9lbS7OWcn1qw9Xfxon80eRtPhYzx5GT8NB5O4kJy3sbGGdEGFwPu5sAZJK52SEbnRNk9QJmouLWg0ueApCgPWSGNlinoORJiIPrs69G5c87kl32arZuvq8DLjkqdShcKOwgNVuMZ7RzbbuLIybp8hZN1e2Z-9QoYfMj6w9YLcb_P_oW_z5WvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429456568</pqid></control><display><type>article</type><title>Using Neural Networks in Atomic Energy Thermophysical Problems (Review)</title><source>SpringerNature Journals</source><creator>Zabirov, A. R. ; Smirnova, A. A. ; Feofilaktova, Yu. M. ; Shevchenko, R. A. ; Shevchenko, S. A. ; Yashnikov, D. A. ; Soloviev, S. L.</creator><creatorcontrib>Zabirov, A. R. ; Smirnova, A. A. ; Feofilaktova, Yu. M. ; Shevchenko, R. A. ; Shevchenko, S. A. ; Yashnikov, D. A. ; Soloviev, S. L.</creatorcontrib><description>The prospects for the implementation of modern digital technologies based on artificial neural networks (ANN) in the nuclear facility safety analysis are considered and the review of works on this topic is presented. The review includes publications in which neural networks are used in experimental studies and their result processing in such areas as heat transfer and hydrodynamics in single-phase media, in phase transformations, and hydrogen safety. Computational methods of machine learning based on artificial neural networks are successfully used to identify the relationship between the input and output system parameters without building complex mathematical computational models as well as for systems in which processes are characterized by nonlinearity and data uncertainty. However, a unified approach to the substantiation and assessment of the applicability of such methods has not yet been formed. As a result of the analysis, the need is shown for special requirements in order to assess the applicability of these technologies and substantiation (verification and validation) of calculation models based on neural networks.</description><identifier>ISSN: 0040-6015</identifier><identifier>EISSN: 1555-6301</identifier><identifier>DOI: 10.1134/S0040601520080108</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Computational fluid dynamics ; Engineering ; Engineering Thermodynamics ; Fluid flow ; Heat and Mass Transfer ; Hydrodynamics ; Learning theory ; Machine learning ; Neural networks ; Nuclear energy ; Nuclear engineering ; Nuclear Power Plants ; Nuclear safety ; Parameter identification ; Phase transitions</subject><ispartof>Thermal engineering, 2020-08, Vol.67 (8), p.497-508</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-afae6cec317d3fa1e6569ea3ba6fb81485d4f061ab32913a0fa4af4916d0ee183</citedby><cites>FETCH-LOGICAL-c422t-afae6cec317d3fa1e6569ea3ba6fb81485d4f061ab32913a0fa4af4916d0ee183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040601520080108$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040601520080108$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zabirov, A. R.</creatorcontrib><creatorcontrib>Smirnova, A. A.</creatorcontrib><creatorcontrib>Feofilaktova, Yu. M.</creatorcontrib><creatorcontrib>Shevchenko, R. A.</creatorcontrib><creatorcontrib>Shevchenko, S. A.</creatorcontrib><creatorcontrib>Yashnikov, D. A.</creatorcontrib><creatorcontrib>Soloviev, S. L.</creatorcontrib><title>Using Neural Networks in Atomic Energy Thermophysical Problems (Review)</title><title>Thermal engineering</title><addtitle>Therm. Eng</addtitle><description>The prospects for the implementation of modern digital technologies based on artificial neural networks (ANN) in the nuclear facility safety analysis are considered and the review of works on this topic is presented. The review includes publications in which neural networks are used in experimental studies and their result processing in such areas as heat transfer and hydrodynamics in single-phase media, in phase transformations, and hydrogen safety. Computational methods of machine learning based on artificial neural networks are successfully used to identify the relationship between the input and output system parameters without building complex mathematical computational models as well as for systems in which processes are characterized by nonlinearity and data uncertainty. However, a unified approach to the substantiation and assessment of the applicability of such methods has not yet been formed. As a result of the analysis, the need is shown for special requirements in order to assess the applicability of these technologies and substantiation (verification and validation) of calculation models based on neural networks.</description><subject>Artificial neural networks</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Hydrodynamics</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nuclear energy</subject><subject>Nuclear engineering</subject><subject>Nuclear Power Plants</subject><subject>Nuclear safety</subject><subject>Parameter identification</subject><subject>Phase transitions</subject><issn>0040-6015</issn><issn>1555-6301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAFz1EZ_afybGUWoWiou05bNLZNrVJ6m5q6bd3QwUP4ukxvN97A4-xS4RbRCHv3gEkaEDFARJASI5YD5VSsRaAx6zX2XHnn7Iz71fhlBJVj41nvqwX0TNtnVkHaXeN-_BRWUeDtqnKIhrV5Bb7aLokVzWb5d6XRQBfXZOvqfLR9Rt9lbS7OWcn1qw9Xfxon80eRtPhYzx5GT8NB5O4kJy3sbGGdEGFwPu5sAZJK52SEbnRNk9QJmouLWg0ueApCgPWSGNlinoORJiIPrs69G5c87kl32arZuvq8DLjkqdShcKOwgNVuMZ7RzbbuLIybp8hZN1e2Z-9QoYfMj6w9YLcb_P_oW_z5WvO</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zabirov, A. R.</creator><creator>Smirnova, A. A.</creator><creator>Feofilaktova, Yu. M.</creator><creator>Shevchenko, R. A.</creator><creator>Shevchenko, S. A.</creator><creator>Yashnikov, D. A.</creator><creator>Soloviev, S. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Using Neural Networks in Atomic Energy Thermophysical Problems (Review)</title><author>Zabirov, A. R. ; Smirnova, A. A. ; Feofilaktova, Yu. M. ; Shevchenko, R. A. ; Shevchenko, S. A. ; Yashnikov, D. A. ; Soloviev, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-afae6cec317d3fa1e6569ea3ba6fb81485d4f061ab32913a0fa4af4916d0ee183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Hydrodynamics</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nuclear energy</topic><topic>Nuclear engineering</topic><topic>Nuclear Power Plants</topic><topic>Nuclear safety</topic><topic>Parameter identification</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabirov, A. R.</creatorcontrib><creatorcontrib>Smirnova, A. A.</creatorcontrib><creatorcontrib>Feofilaktova, Yu. M.</creatorcontrib><creatorcontrib>Shevchenko, R. A.</creatorcontrib><creatorcontrib>Shevchenko, S. A.</creatorcontrib><creatorcontrib>Yashnikov, D. A.</creatorcontrib><creatorcontrib>Soloviev, S. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabirov, A. R.</au><au>Smirnova, A. A.</au><au>Feofilaktova, Yu. M.</au><au>Shevchenko, R. A.</au><au>Shevchenko, S. A.</au><au>Yashnikov, D. A.</au><au>Soloviev, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Neural Networks in Atomic Energy Thermophysical Problems (Review)</atitle><jtitle>Thermal engineering</jtitle><stitle>Therm. Eng</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>67</volume><issue>8</issue><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>0040-6015</issn><eissn>1555-6301</eissn><abstract>The prospects for the implementation of modern digital technologies based on artificial neural networks (ANN) in the nuclear facility safety analysis are considered and the review of works on this topic is presented. The review includes publications in which neural networks are used in experimental studies and their result processing in such areas as heat transfer and hydrodynamics in single-phase media, in phase transformations, and hydrogen safety. Computational methods of machine learning based on artificial neural networks are successfully used to identify the relationship between the input and output system parameters without building complex mathematical computational models as well as for systems in which processes are characterized by nonlinearity and data uncertainty. However, a unified approach to the substantiation and assessment of the applicability of such methods has not yet been formed. As a result of the analysis, the need is shown for special requirements in order to assess the applicability of these technologies and substantiation (verification and validation) of calculation models based on neural networks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040601520080108</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6015
ispartof Thermal engineering, 2020-08, Vol.67 (8), p.497-508
issn 0040-6015
1555-6301
language eng
recordid cdi_proquest_journals_2429456568
source SpringerNature Journals
subjects Artificial neural networks
Computational fluid dynamics
Engineering
Engineering Thermodynamics
Fluid flow
Heat and Mass Transfer
Hydrodynamics
Learning theory
Machine learning
Neural networks
Nuclear energy
Nuclear engineering
Nuclear Power Plants
Nuclear safety
Parameter identification
Phase transitions
title Using Neural Networks in Atomic Energy Thermophysical Problems (Review)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Neural%20Networks%20in%20Atomic%20Energy%20Thermophysical%20Problems%20(Review)&rft.jtitle=Thermal%20engineering&rft.au=Zabirov,%20A.%20R.&rft.date=2020-08-01&rft.volume=67&rft.issue=8&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=0040-6015&rft.eissn=1555-6301&rft_id=info:doi/10.1134/S0040601520080108&rft_dat=%3Cproquest_cross%3E2429456568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429456568&rft_id=info:pmid/&rfr_iscdi=true