Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells

Transparent conductive electrode (TCE) is an essential part of modern optoelectronic devices. Silver nanowire (AgNW) is regarded as the most promising TCEs, owing to its balanced conductivity and transparency, and solution processability. The use of insulating polyvinyl pyrrolidone (PVP) surfactant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-10, Vol.55 (30), p.14893-14906
Hauptverfasser: Sun, Xue, Zha, Wusong, Lin, Tong, Wei, Junfeng, Ismail, Irfan, Wang, Zhenguo, Lin, Jian, Luo, Qun, Ding, Changzeng, Zhang, Lianping, Su, Zisheng, Chu, Bei, Zhang, Dongyu, Ma, Chang-Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14906
container_issue 30
container_start_page 14893
container_title Journal of materials science
container_volume 55
creator Sun, Xue
Zha, Wusong
Lin, Tong
Wei, Junfeng
Ismail, Irfan
Wang, Zhenguo
Lin, Jian
Luo, Qun
Ding, Changzeng
Zhang, Lianping
Su, Zisheng
Chu, Bei
Zhang, Dongyu
Ma, Chang-Qi
description Transparent conductive electrode (TCE) is an essential part of modern optoelectronic devices. Silver nanowire (AgNW) is regarded as the most promising TCEs, owing to its balanced conductivity and transparency, and solution processability. The use of insulating polyvinyl pyrrolidone (PVP) surfactant limits the conductivity of the final AgNW networks. Herein, by introducing a small amount of deionized water into the AgNWs dispersion in isopropanol (IPA), the conductivity of the spray-coated AgNW electrode was significantly improved. Sheet resistance (Rs) of 27.0 Ω □ −1 with transparency of 92% (at 550 nm) was obtained for the AgNW films spray coated from the AgNW ink with 20% water, which is much lower than the IPA-only AgNW film (120.9 Ω □ −1 with similar transparency). Morphology analysis confirmed that water is able to wash PVP away from the AgNW surface and promote the formation of AgNW bundles, which increase the conductivity. The optimized AgNW ink was then used for perovskite and polymer solar cells. High power conversion efficiencies of 14.04% for perovskite solar cell and 6.44% for organic solar cells with averaged light transmittance of 21.7% and 33.12% are achieved, respectively, which are among the highest values for all solution-processed semi-transparent perovskite and polymer solar cells.
doi_str_mv 10.1007/s10853-020-04975-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2429356513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631235021</galeid><sourcerecordid>A631235021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-fc749a2916cad7245b433eb26e7fa7a1c62855abef57f8afad0ef0fb5d825d283</originalsourceid><addsrcrecordid>eNp9kstqGzEUhofSQt20L9CVoKsulOgymssyhF4CgUIvdCmONUeO0rHk6shO_SJ93sh1IRhK0UIgvu9Iv_ib5rUU51KI_oKkGIzmQgku2rE3fP-kWUjTa94OQj9tFkIoxVXbyefNC6I7IYTplVw0v79DwcyBKFDBifmU11BCiix5dhtWt_OeuRSnrSthh4zCvMPMIsR0HzIynNGVnCY8iAzmmVGatwefb3JySFRnEq4DLxkibSBjLGyDOe3oRyjIIE4s5RXE4A4qZOZwnull88zDTPjq737WfHv_7uvVR37z6cP11eUNd60ZC_eub0dQo-wcTL1qzbLVGpeqw95DD9J1ajAGluhN7wfwMAn0wi_NNCgzqUGfNW-Oc-trf26Rir1L2xzrlVa1atSmM1I_UiuY0YboU03j1oGcvey0VNoIJSt1_g-qrqnmr3-IPtTzE-HtiVCZgr_KCrZE9vrL51NWHVmXE1FGbzc5rCHvrRT2UAF7rICtFbB_KmD3VdJHiSocV5gf0_3HegBXq7dn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429356513</pqid></control><display><type>article</type><title>Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Xue ; Zha, Wusong ; Lin, Tong ; Wei, Junfeng ; Ismail, Irfan ; Wang, Zhenguo ; Lin, Jian ; Luo, Qun ; Ding, Changzeng ; Zhang, Lianping ; Su, Zisheng ; Chu, Bei ; Zhang, Dongyu ; Ma, Chang-Qi</creator><creatorcontrib>Sun, Xue ; Zha, Wusong ; Lin, Tong ; Wei, Junfeng ; Ismail, Irfan ; Wang, Zhenguo ; Lin, Jian ; Luo, Qun ; Ding, Changzeng ; Zhang, Lianping ; Su, Zisheng ; Chu, Bei ; Zhang, Dongyu ; Ma, Chang-Qi</creatorcontrib><description>Transparent conductive electrode (TCE) is an essential part of modern optoelectronic devices. Silver nanowire (AgNW) is regarded as the most promising TCEs, owing to its balanced conductivity and transparency, and solution processability. The use of insulating polyvinyl pyrrolidone (PVP) surfactant limits the conductivity of the final AgNW networks. Herein, by introducing a small amount of deionized water into the AgNWs dispersion in isopropanol (IPA), the conductivity of the spray-coated AgNW electrode was significantly improved. Sheet resistance (Rs) of 27.0 Ω □ −1 with transparency of 92% (at 550 nm) was obtained for the AgNW films spray coated from the AgNW ink with 20% water, which is much lower than the IPA-only AgNW film (120.9 Ω □ −1 with similar transparency). Morphology analysis confirmed that water is able to wash PVP away from the AgNW surface and promote the formation of AgNW bundles, which increase the conductivity. The optimized AgNW ink was then used for perovskite and polymer solar cells. High power conversion efficiencies of 14.04% for perovskite solar cell and 6.44% for organic solar cells with averaged light transmittance of 21.7% and 33.12% are achieved, respectively, which are among the highest values for all solution-processed semi-transparent perovskite and polymer solar cells.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04975-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coated electrodes ; Conductivity ; Crystallography and Scattering Methods ; Deionization ; Electric properties ; Electrodes ; Energy conversion efficiency ; Energy Materials ; Light transmittance ; Materials Science ; Morphology ; Nanowires ; Optoelectronic devices ; Perovskite ; Perovskites ; Photovoltaic cells ; Polymer Sciences ; Polymers ; Solar batteries ; Solar cells ; Solid Mechanics ; Spray coating</subject><ispartof>Journal of materials science, 2020-10, Vol.55 (30), p.14893-14906</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-fc749a2916cad7245b433eb26e7fa7a1c62855abef57f8afad0ef0fb5d825d283</citedby><cites>FETCH-LOGICAL-c459t-fc749a2916cad7245b433eb26e7fa7a1c62855abef57f8afad0ef0fb5d825d283</cites><orcidid>0000-0002-9293-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04975-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04975-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sun, Xue</creatorcontrib><creatorcontrib>Zha, Wusong</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Wei, Junfeng</creatorcontrib><creatorcontrib>Ismail, Irfan</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Luo, Qun</creatorcontrib><creatorcontrib>Ding, Changzeng</creatorcontrib><creatorcontrib>Zhang, Lianping</creatorcontrib><creatorcontrib>Su, Zisheng</creatorcontrib><creatorcontrib>Chu, Bei</creatorcontrib><creatorcontrib>Zhang, Dongyu</creatorcontrib><creatorcontrib>Ma, Chang-Qi</creatorcontrib><title>Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Transparent conductive electrode (TCE) is an essential part of modern optoelectronic devices. Silver nanowire (AgNW) is regarded as the most promising TCEs, owing to its balanced conductivity and transparency, and solution processability. The use of insulating polyvinyl pyrrolidone (PVP) surfactant limits the conductivity of the final AgNW networks. Herein, by introducing a small amount of deionized water into the AgNWs dispersion in isopropanol (IPA), the conductivity of the spray-coated AgNW electrode was significantly improved. Sheet resistance (Rs) of 27.0 Ω □ −1 with transparency of 92% (at 550 nm) was obtained for the AgNW films spray coated from the AgNW ink with 20% water, which is much lower than the IPA-only AgNW film (120.9 Ω □ −1 with similar transparency). Morphology analysis confirmed that water is able to wash PVP away from the AgNW surface and promote the formation of AgNW bundles, which increase the conductivity. The optimized AgNW ink was then used for perovskite and polymer solar cells. High power conversion efficiencies of 14.04% for perovskite solar cell and 6.44% for organic solar cells with averaged light transmittance of 21.7% and 33.12% are achieved, respectively, which are among the highest values for all solution-processed semi-transparent perovskite and polymer solar cells.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coated electrodes</subject><subject>Conductivity</subject><subject>Crystallography and Scattering Methods</subject><subject>Deionization</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Energy conversion efficiency</subject><subject>Energy Materials</subject><subject>Light transmittance</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanowires</subject><subject>Optoelectronic devices</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Solar batteries</subject><subject>Solar cells</subject><subject>Solid Mechanics</subject><subject>Spray coating</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kstqGzEUhofSQt20L9CVoKsulOgymssyhF4CgUIvdCmONUeO0rHk6shO_SJ93sh1IRhK0UIgvu9Iv_ib5rUU51KI_oKkGIzmQgku2rE3fP-kWUjTa94OQj9tFkIoxVXbyefNC6I7IYTplVw0v79DwcyBKFDBifmU11BCiix5dhtWt_OeuRSnrSthh4zCvMPMIsR0HzIynNGVnCY8iAzmmVGatwefb3JySFRnEq4DLxkibSBjLGyDOe3oRyjIIE4s5RXE4A4qZOZwnull88zDTPjq737WfHv_7uvVR37z6cP11eUNd60ZC_eub0dQo-wcTL1qzbLVGpeqw95DD9J1ajAGluhN7wfwMAn0wi_NNCgzqUGfNW-Oc-trf26Rir1L2xzrlVa1atSmM1I_UiuY0YboU03j1oGcvey0VNoIJSt1_g-qrqnmr3-IPtTzE-HtiVCZgr_KCrZE9vrL51NWHVmXE1FGbzc5rCHvrRT2UAF7rICtFbB_KmD3VdJHiSocV5gf0_3HegBXq7dn</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sun, Xue</creator><creator>Zha, Wusong</creator><creator>Lin, Tong</creator><creator>Wei, Junfeng</creator><creator>Ismail, Irfan</creator><creator>Wang, Zhenguo</creator><creator>Lin, Jian</creator><creator>Luo, Qun</creator><creator>Ding, Changzeng</creator><creator>Zhang, Lianping</creator><creator>Su, Zisheng</creator><creator>Chu, Bei</creator><creator>Zhang, Dongyu</creator><creator>Ma, Chang-Qi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9293-5027</orcidid></search><sort><creationdate>20201001</creationdate><title>Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells</title><author>Sun, Xue ; Zha, Wusong ; Lin, Tong ; Wei, Junfeng ; Ismail, Irfan ; Wang, Zhenguo ; Lin, Jian ; Luo, Qun ; Ding, Changzeng ; Zhang, Lianping ; Su, Zisheng ; Chu, Bei ; Zhang, Dongyu ; Ma, Chang-Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-fc749a2916cad7245b433eb26e7fa7a1c62855abef57f8afad0ef0fb5d825d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coated electrodes</topic><topic>Conductivity</topic><topic>Crystallography and Scattering Methods</topic><topic>Deionization</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Energy conversion efficiency</topic><topic>Energy Materials</topic><topic>Light transmittance</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanowires</topic><topic>Optoelectronic devices</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Solar batteries</topic><topic>Solar cells</topic><topic>Solid Mechanics</topic><topic>Spray coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xue</creatorcontrib><creatorcontrib>Zha, Wusong</creatorcontrib><creatorcontrib>Lin, Tong</creatorcontrib><creatorcontrib>Wei, Junfeng</creatorcontrib><creatorcontrib>Ismail, Irfan</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Luo, Qun</creatorcontrib><creatorcontrib>Ding, Changzeng</creatorcontrib><creatorcontrib>Zhang, Lianping</creatorcontrib><creatorcontrib>Su, Zisheng</creatorcontrib><creatorcontrib>Chu, Bei</creatorcontrib><creatorcontrib>Zhang, Dongyu</creatorcontrib><creatorcontrib>Ma, Chang-Qi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xue</au><au>Zha, Wusong</au><au>Lin, Tong</au><au>Wei, Junfeng</au><au>Ismail, Irfan</au><au>Wang, Zhenguo</au><au>Lin, Jian</au><au>Luo, Qun</au><au>Ding, Changzeng</au><au>Zhang, Lianping</au><au>Su, Zisheng</au><au>Chu, Bei</au><au>Zhang, Dongyu</au><au>Ma, Chang-Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>55</volume><issue>30</issue><spage>14893</spage><epage>14906</epage><pages>14893-14906</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Transparent conductive electrode (TCE) is an essential part of modern optoelectronic devices. Silver nanowire (AgNW) is regarded as the most promising TCEs, owing to its balanced conductivity and transparency, and solution processability. The use of insulating polyvinyl pyrrolidone (PVP) surfactant limits the conductivity of the final AgNW networks. Herein, by introducing a small amount of deionized water into the AgNWs dispersion in isopropanol (IPA), the conductivity of the spray-coated AgNW electrode was significantly improved. Sheet resistance (Rs) of 27.0 Ω □ −1 with transparency of 92% (at 550 nm) was obtained for the AgNW films spray coated from the AgNW ink with 20% water, which is much lower than the IPA-only AgNW film (120.9 Ω □ −1 with similar transparency). Morphology analysis confirmed that water is able to wash PVP away from the AgNW surface and promote the formation of AgNW bundles, which increase the conductivity. The optimized AgNW ink was then used for perovskite and polymer solar cells. High power conversion efficiencies of 14.04% for perovskite solar cell and 6.44% for organic solar cells with averaged light transmittance of 21.7% and 33.12% are achieved, respectively, which are among the highest values for all solution-processed semi-transparent perovskite and polymer solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04975-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9293-5027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-10, Vol.55 (30), p.14893-14906
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2429356513
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coated electrodes
Conductivity
Crystallography and Scattering Methods
Deionization
Electric properties
Electrodes
Energy conversion efficiency
Energy Materials
Light transmittance
Materials Science
Morphology
Nanowires
Optoelectronic devices
Perovskite
Perovskites
Photovoltaic cells
Polymer Sciences
Polymers
Solar batteries
Solar cells
Solid Mechanics
Spray coating
title Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-assisted%20formation%20of%20highly%20conductive%20silver%20nanowire%20electrode%20for%20all%20solution-processed%20semi-transparent%20perovskite%20and%20organic%20solar%20cells&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sun,%20Xue&rft.date=2020-10-01&rft.volume=55&rft.issue=30&rft.spage=14893&rft.epage=14906&rft.pages=14893-14906&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04975-y&rft_dat=%3Cgale_proqu%3EA631235021%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429356513&rft_id=info:pmid/&rft_galeid=A631235021&rfr_iscdi=true