Calorimetry with deep learning: particle simulation and reconstruction for collider physics

Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2020-07, Vol.80 (7), p.1-31, Article 688
Hauptverfasser: Belayneh, Dawit, Carminati, Federico, Farbin, Amir, Hooberman, Benjamin, Khattak, Gulrukh, Liu, Miaoyuan, Liu, Junze, Olivito, Dominick, Pacela, Vitória Barin, Pierini, Maurizio, Schwing, Alexander, Spiropulu, Maria, Vallecorsa, Sofia, Vlimant, Jean-Roch, Wei, Wei, Zhang, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 7
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 80
creator Belayneh, Dawit
Carminati, Federico
Farbin, Amir
Hooberman, Benjamin
Khattak, Gulrukh
Liu, Miaoyuan
Liu, Junze
Olivito, Dominick
Pacela, Vitória Barin
Pierini, Maurizio
Schwing, Alexander
Spiropulu, Maria
Vallecorsa, Sofia
Vlimant, Jean-Roch
Wei, Wei
Zhang, Matt
description Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.
doi_str_mv 10.1140/epjc/s10052-020-8251-9
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2429350569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631235039</galeid><doaj_id>oai_doaj_org_article_8bacdb71f2054c19841a5446fd9e8864</doaj_id><sourcerecordid>A631235039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-6b19a25bf837fbc00ae098a00993453b8661e8a5d71a2b355523b9c4ca7faa793</originalsourceid><addsrcrecordid>eNqFkktr3DAUhU1poWnav1BMu-rCid6WugtDHwOBQh-rLsS1LHk0eCxXkmnn31eOQ0pWRQuJw_mu7oFTVa8xusKYoWs7H811wghx0iCCGkk4btST6gIzyhpR5KcPb8aeVy9SOiKECEPyovq5gzFEf7I5nuvfPh_q3tq5Hi3EyU_D-3qGmL0ZbZ38aRkh-zDVMPV1tCZMKcfF3EkuxNqEcfS9jfV8OCdv0svqmYMx2Vf392X14-OH77vPze2XT_vdzW1jBGW5ER1WQHjnJG1dZxACi5QEhJSijNNOCoGtBN63GEhHOeeEdsowA60DaBW9rPbb3D7AUc8lDcSzDuD1nRDioO9DaNmB6bsWO4I4M1hJhoEzJlyvrJSClVlvtlkhZa-T8dmaQ0k6WZM1FkxyQYvp7WaaY_i12JT1MSxxKhk1YURRjrhY17raXAOUn_3kQo5gyuntyZeR1vmi3wiKSSHoCrx7BBRPtn_yAEtKev_t62Ov2LwmhpSidQ-5MdJrLfRaC73VQpda6LUWegXbDUwFmAYb_-3-H_IvEWC8vg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429350569</pqid></control><display><type>article</type><title>Calorimetry with deep learning: particle simulation and reconstruction for collider physics</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Belayneh, Dawit ; Carminati, Federico ; Farbin, Amir ; Hooberman, Benjamin ; Khattak, Gulrukh ; Liu, Miaoyuan ; Liu, Junze ; Olivito, Dominick ; Pacela, Vitória Barin ; Pierini, Maurizio ; Schwing, Alexander ; Spiropulu, Maria ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Wei, Wei ; Zhang, Matt</creator><creatorcontrib>Belayneh, Dawit ; Carminati, Federico ; Farbin, Amir ; Hooberman, Benjamin ; Khattak, Gulrukh ; Liu, Miaoyuan ; Liu, Junze ; Olivito, Dominick ; Pacela, Vitória Barin ; Pierini, Maurizio ; Schwing, Alexander ; Spiropulu, Maria ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Wei, Wei ; Zhang, Matt ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-020-8251-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accident reconstruction ; Algorithms ; Angles (geometry) ; Astronomy ; Astrophysics and Cosmology ; Calorimetry ; Colliders (Nuclear physics) ; Comparative analysis ; Computer simulation ; Data mining ; Deep learning ; Detectors ; Elementary Particles ; Hadrons ; Heavy Ions ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Machine learning ; Measurement Science and Instrumentation ; Neural networks ; Nuclear Energy ; Nuclear Physics ; Optimization ; Particle accelerators ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Experimental Physics ; Showers ; Simulation ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2020-07, Vol.80 (7), p.1-31, Article 688</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-6b19a25bf837fbc00ae098a00993453b8661e8a5d71a2b355523b9c4ca7faa793</citedby><cites>FETCH-LOGICAL-c634t-6b19a25bf837fbc00ae098a00993453b8661e8a5d71a2b355523b9c4ca7faa793</cites><orcidid>0000000186595727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-020-8251-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjc/s10052-020-8251-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Belayneh, Dawit</creatorcontrib><creatorcontrib>Carminati, Federico</creatorcontrib><creatorcontrib>Farbin, Amir</creatorcontrib><creatorcontrib>Hooberman, Benjamin</creatorcontrib><creatorcontrib>Khattak, Gulrukh</creatorcontrib><creatorcontrib>Liu, Miaoyuan</creatorcontrib><creatorcontrib>Liu, Junze</creatorcontrib><creatorcontrib>Olivito, Dominick</creatorcontrib><creatorcontrib>Pacela, Vitória Barin</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Schwing, Alexander</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Matt</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Calorimetry with deep learning: particle simulation and reconstruction for collider physics</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.</description><subject>Accident reconstruction</subject><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Calorimetry</subject><subject>Colliders (Nuclear physics)</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Neural networks</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Optimization</subject><subject>Particle accelerators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Experimental Physics</subject><subject>Showers</subject><subject>Simulation</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktr3DAUhU1poWnav1BMu-rCid6WugtDHwOBQh-rLsS1LHk0eCxXkmnn31eOQ0pWRQuJw_mu7oFTVa8xusKYoWs7H811wghx0iCCGkk4btST6gIzyhpR5KcPb8aeVy9SOiKECEPyovq5gzFEf7I5nuvfPh_q3tq5Hi3EyU_D-3qGmL0ZbZ38aRkh-zDVMPV1tCZMKcfF3EkuxNqEcfS9jfV8OCdv0svqmYMx2Vf392X14-OH77vPze2XT_vdzW1jBGW5ER1WQHjnJG1dZxACi5QEhJSijNNOCoGtBN63GEhHOeeEdsowA60DaBW9rPbb3D7AUc8lDcSzDuD1nRDioO9DaNmB6bsWO4I4M1hJhoEzJlyvrJSClVlvtlkhZa-T8dmaQ0k6WZM1FkxyQYvp7WaaY_i12JT1MSxxKhk1YURRjrhY17raXAOUn_3kQo5gyuntyZeR1vmi3wiKSSHoCrx7BBRPtn_yAEtKev_t62Ov2LwmhpSidQ-5MdJrLfRaC73VQpda6LUWegXbDUwFmAYb_-3-H_IvEWC8vg</recordid><startdate>20200731</startdate><enddate>20200731</enddate><creator>Belayneh, Dawit</creator><creator>Carminati, Federico</creator><creator>Farbin, Amir</creator><creator>Hooberman, Benjamin</creator><creator>Khattak, Gulrukh</creator><creator>Liu, Miaoyuan</creator><creator>Liu, Junze</creator><creator>Olivito, Dominick</creator><creator>Pacela, Vitória Barin</creator><creator>Pierini, Maurizio</creator><creator>Schwing, Alexander</creator><creator>Spiropulu, Maria</creator><creator>Vallecorsa, Sofia</creator><creator>Vlimant, Jean-Roch</creator><creator>Wei, Wei</creator><creator>Zhang, Matt</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000000186595727</orcidid></search><sort><creationdate>20200731</creationdate><title>Calorimetry with deep learning: particle simulation and reconstruction for collider physics</title><author>Belayneh, Dawit ; Carminati, Federico ; Farbin, Amir ; Hooberman, Benjamin ; Khattak, Gulrukh ; Liu, Miaoyuan ; Liu, Junze ; Olivito, Dominick ; Pacela, Vitória Barin ; Pierini, Maurizio ; Schwing, Alexander ; Spiropulu, Maria ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Wei, Wei ; Zhang, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-6b19a25bf837fbc00ae098a00993453b8661e8a5d71a2b355523b9c4ca7faa793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accident reconstruction</topic><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Calorimetry</topic><topic>Colliders (Nuclear physics)</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Neural networks</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Optimization</topic><topic>Particle accelerators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Experimental Physics</topic><topic>Showers</topic><topic>Simulation</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belayneh, Dawit</creatorcontrib><creatorcontrib>Carminati, Federico</creatorcontrib><creatorcontrib>Farbin, Amir</creatorcontrib><creatorcontrib>Hooberman, Benjamin</creatorcontrib><creatorcontrib>Khattak, Gulrukh</creatorcontrib><creatorcontrib>Liu, Miaoyuan</creatorcontrib><creatorcontrib>Liu, Junze</creatorcontrib><creatorcontrib>Olivito, Dominick</creatorcontrib><creatorcontrib>Pacela, Vitória Barin</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Schwing, Alexander</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Matt</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belayneh, Dawit</au><au>Carminati, Federico</au><au>Farbin, Amir</au><au>Hooberman, Benjamin</au><au>Khattak, Gulrukh</au><au>Liu, Miaoyuan</au><au>Liu, Junze</au><au>Olivito, Dominick</au><au>Pacela, Vitória Barin</au><au>Pierini, Maurizio</au><au>Schwing, Alexander</au><au>Spiropulu, Maria</au><au>Vallecorsa, Sofia</au><au>Vlimant, Jean-Roch</au><au>Wei, Wei</au><au>Zhang, Matt</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calorimetry with deep learning: particle simulation and reconstruction for collider physics</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2020-07-31</date><risdate>2020</risdate><volume>80</volume><issue>7</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><artnum>688</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-020-8251-9</doi><tpages>31</tpages><orcidid>https://orcid.org/0000000186595727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2020-07, Vol.80 (7), p.1-31, Article 688
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_2429350569
source Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Accident reconstruction
Algorithms
Angles (geometry)
Astronomy
Astrophysics and Cosmology
Calorimetry
Colliders (Nuclear physics)
Comparative analysis
Computer simulation
Data mining
Deep learning
Detectors
Elementary Particles
Hadrons
Heavy Ions
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Machine learning
Measurement Science and Instrumentation
Neural networks
Nuclear Energy
Nuclear Physics
Optimization
Particle accelerators
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Regular Article - Experimental Physics
Showers
Simulation
String Theory
title Calorimetry with deep learning: particle simulation and reconstruction for collider physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calorimetry%20with%20deep%20learning:%20particle%20simulation%20and%20reconstruction%20for%20collider%20physics&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Belayneh,%20Dawit&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-07-31&rft.volume=80&rft.issue=7&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.artnum=688&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-020-8251-9&rft_dat=%3Cgale_doaj_%3EA631235039%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429350569&rft_id=info:pmid/&rft_galeid=A631235039&rft_doaj_id=oai_doaj_org_article_8bacdb71f2054c19841a5446fd9e8864&rfr_iscdi=true