Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale
A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecula...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2020-09, Vol.68 (3), Article 83 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Tribology letters |
container_volume | 68 |
creator | Zhang, Tao Huang, Haibo Li, Wei Chang, Xiangdong Cao, Jun Hua, Licheng |
description | A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecular chains. Frictional models were developed for vulcanized and raw styrene-butadiene rubber-ferrum (SBR-Fe) to study the atomic behavior at the frictional interface. The results at the atomic scale show considerable reductions in the coefficient of friction (COF) and the interfacial temperature of approximately 45.8% and 13.27% for the vulcanized SBR matrix, respectively, from those of raw SBR. In addition, the relative concentration (RC), the radial distribution function (RDF) and interaction energy of the vulcanized SBR are 21.61%, 6.68% and 60.12% lower than those of the raw SBR, respectively. The resulting decrease in the real contact area, adhesion and contact temperature at the interface can significantly improve the tribological properties of the vulcanized SBR over those of raw SBR. The results of this research study show how vulcanization can enhance the tribological properties of polymer composites at the atomic scale.
Graphical Abstract |
doi_str_mv | 10.1007/s11249-020-01321-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429348858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429348858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d3fdd442ee1b9b14a8e451c676178cb72d29bf283e21ef29605039c769a29fc23</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwIw_nWCoelYpAtHC1HGfTpkrsYidU7a_HECRunHaknW92NVF0Sck1JSS78ZSyOMeEEUwoZxTvjqIRTTKOWUbpcdCEcSyE4KfRmfcbQgImklF0eO8brUx9UF1tDXqyJTS1WSFlSvQEeh1WvkWVdWjWbp39hBItXV3Yxq5qrRr0Ai4sW2U0IFuhRbd3YADf9p0q66DQa18U4JDqULcGNOlsW2u0CCicRyeVajxc_M5x9HZ_t5w-4vnzw2w6mWPNk7TDJa_KMo4ZAC3ygsZKQJxQnWYpzYQuMlayvKiY4MAoVCxPSUJ4rrM0VyyvNOPj6GrIDf9_9OA7ubG9M-GkZDHLeSxEIoKLDS7trPcOKrl1davcXlIivzuWQ8cydCx_Opa7APEB8sFsVuD-ov-hvgCtr4DH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429348858</pqid></control><display><type>article</type><title>Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Tao ; Huang, Haibo ; Li, Wei ; Chang, Xiangdong ; Cao, Jun ; Hua, Licheng</creator><creatorcontrib>Zhang, Tao ; Huang, Haibo ; Li, Wei ; Chang, Xiangdong ; Cao, Jun ; Hua, Licheng</creatorcontrib><description>A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecular chains. Frictional models were developed for vulcanized and raw styrene-butadiene rubber-ferrum (SBR-Fe) to study the atomic behavior at the frictional interface. The results at the atomic scale show considerable reductions in the coefficient of friction (COF) and the interfacial temperature of approximately 45.8% and 13.27% for the vulcanized SBR matrix, respectively, from those of raw SBR. In addition, the relative concentration (RC), the radial distribution function (RDF) and interaction energy of the vulcanized SBR are 21.61%, 6.68% and 60.12% lower than those of the raw SBR, respectively. The resulting decrease in the real contact area, adhesion and contact temperature at the interface can significantly improve the tribological properties of the vulcanized SBR over those of raw SBR. The results of this research study show how vulcanization can enhance the tribological properties of polymer composites at the atomic scale.
Graphical Abstract</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-020-01321-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Butadiene ; Chemistry and Materials Science ; Coefficient of friction ; Corrosion and Coatings ; Distribution functions ; Materials Science ; Molecular chains ; Nanotechnology ; Original Paper ; Physical Chemistry ; Polymer matrix composites ; Radial distribution ; Rubber ; Styrenes ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Tribology ; Vulcanization</subject><ispartof>Tribology letters, 2020-09, Vol.68 (3), Article 83</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d3fdd442ee1b9b14a8e451c676178cb72d29bf283e21ef29605039c769a29fc23</citedby><cites>FETCH-LOGICAL-c356t-d3fdd442ee1b9b14a8e451c676178cb72d29bf283e21ef29605039c769a29fc23</cites><orcidid>0000-0001-8364-5389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-020-01321-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-020-01321-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chang, Xiangdong</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><creatorcontrib>Hua, Licheng</creatorcontrib><title>Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecular chains. Frictional models were developed for vulcanized and raw styrene-butadiene rubber-ferrum (SBR-Fe) to study the atomic behavior at the frictional interface. The results at the atomic scale show considerable reductions in the coefficient of friction (COF) and the interfacial temperature of approximately 45.8% and 13.27% for the vulcanized SBR matrix, respectively, from those of raw SBR. In addition, the relative concentration (RC), the radial distribution function (RDF) and interaction energy of the vulcanized SBR are 21.61%, 6.68% and 60.12% lower than those of the raw SBR, respectively. The resulting decrease in the real contact area, adhesion and contact temperature at the interface can significantly improve the tribological properties of the vulcanized SBR over those of raw SBR. The results of this research study show how vulcanization can enhance the tribological properties of polymer composites at the atomic scale.
Graphical Abstract</description><subject>Butadiene</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Corrosion and Coatings</subject><subject>Distribution functions</subject><subject>Materials Science</subject><subject>Molecular chains</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer matrix composites</subject><subject>Radial distribution</subject><subject>Rubber</subject><subject>Styrenes</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Vulcanization</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mzwIw_nWCoelYpAtHC1HGfTpkrsYidU7a_HECRunHaknW92NVF0Sck1JSS78ZSyOMeEEUwoZxTvjqIRTTKOWUbpcdCEcSyE4KfRmfcbQgImklF0eO8brUx9UF1tDXqyJTS1WSFlSvQEeh1WvkWVdWjWbp39hBItXV3Yxq5qrRr0Ai4sW2U0IFuhRbd3YADf9p0q66DQa18U4JDqULcGNOlsW2u0CCicRyeVajxc_M5x9HZ_t5w-4vnzw2w6mWPNk7TDJa_KMo4ZAC3ygsZKQJxQnWYpzYQuMlayvKiY4MAoVCxPSUJ4rrM0VyyvNOPj6GrIDf9_9OA7ubG9M-GkZDHLeSxEIoKLDS7trPcOKrl1davcXlIivzuWQ8cydCx_Opa7APEB8sFsVuD-ov-hvgCtr4DH</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhang, Tao</creator><creator>Huang, Haibo</creator><creator>Li, Wei</creator><creator>Chang, Xiangdong</creator><creator>Cao, Jun</creator><creator>Hua, Licheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8364-5389</orcidid></search><sort><creationdate>20200901</creationdate><title>Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale</title><author>Zhang, Tao ; Huang, Haibo ; Li, Wei ; Chang, Xiangdong ; Cao, Jun ; Hua, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d3fdd442ee1b9b14a8e451c676178cb72d29bf283e21ef29605039c769a29fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Butadiene</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Corrosion and Coatings</topic><topic>Distribution functions</topic><topic>Materials Science</topic><topic>Molecular chains</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer matrix composites</topic><topic>Radial distribution</topic><topic>Rubber</topic><topic>Styrenes</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Vulcanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Huang, Haibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Chang, Xiangdong</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><creatorcontrib>Hua, Licheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tao</au><au>Huang, Haibo</au><au>Li, Wei</au><au>Chang, Xiangdong</au><au>Cao, Jun</au><au>Hua, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>68</volume><issue>3</issue><artnum>83</artnum><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecular chains. Frictional models were developed for vulcanized and raw styrene-butadiene rubber-ferrum (SBR-Fe) to study the atomic behavior at the frictional interface. The results at the atomic scale show considerable reductions in the coefficient of friction (COF) and the interfacial temperature of approximately 45.8% and 13.27% for the vulcanized SBR matrix, respectively, from those of raw SBR. In addition, the relative concentration (RC), the radial distribution function (RDF) and interaction energy of the vulcanized SBR are 21.61%, 6.68% and 60.12% lower than those of the raw SBR, respectively. The resulting decrease in the real contact area, adhesion and contact temperature at the interface can significantly improve the tribological properties of the vulcanized SBR over those of raw SBR. The results of this research study show how vulcanization can enhance the tribological properties of polymer composites at the atomic scale.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11249-020-01321-w</doi><orcidid>https://orcid.org/0000-0001-8364-5389</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2020-09, Vol.68 (3), Article 83 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_journals_2429348858 |
source | Springer Nature - Complete Springer Journals |
subjects | Butadiene Chemistry and Materials Science Coefficient of friction Corrosion and Coatings Distribution functions Materials Science Molecular chains Nanotechnology Original Paper Physical Chemistry Polymer matrix composites Radial distribution Rubber Styrenes Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Tribology Vulcanization |
title | Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vulcanization%20Modeling%20and%20Mechanism%20for%20Improved%20Tribological%20Performance%20of%20Styrene-Butadiene%20Rubber%20at%20the%20Atomic%20Scale&rft.jtitle=Tribology%20letters&rft.au=Zhang,%20Tao&rft.date=2020-09-01&rft.volume=68&rft.issue=3&rft.artnum=83&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-020-01321-w&rft_dat=%3Cproquest_cross%3E2429348858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429348858&rft_id=info:pmid/&rfr_iscdi=true |