Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid

The transient flow of a viscous incompressible electrically conducting microstretch fluid over an infinite vertical porous plate in the presence of slanted hydromagnetic flow with an aligned angle of to and thermal radiation effects has been analyzed. The governing equations are solved analytically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2019, Vol.23 (2 Part B), p.913-928
Hauptverfasser: Ramya, Elangovan, Muthtamilselvan, Murugan, Doh, Deog-Hee, Cho, Gyeong-Rae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 2 Part B
container_start_page 913
container_title Thermal science
container_volume 23
creator Ramya, Elangovan
Muthtamilselvan, Murugan
Doh, Deog-Hee
Cho, Gyeong-Rae
description The transient flow of a viscous incompressible electrically conducting microstretch fluid over an infinite vertical porous plate in the presence of slanted hydromagnetic flow with an aligned angle of to and thermal radiation effects has been analyzed. The governing equations are solved analytically by using the technique of the state space approach and the inversion of the Laplace transforms is carried out using a numerical approach for varies physical parameters on the velocity, microrotation, microstretch and temperature profiles are shown graphically. In order to verify the accuracy of the present results, we have compared these results with the numerical solution by using the Crank-Nicolson implicit finite difference method. It is found that the thickness of thermal boundary layer increases with an increase in the value of thermal radiation whereas antithesis trend is seen with increasing the Prandtl number.
doi_str_mv 10.2298/TSCI170227185R
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429080042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429080042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ab7617abf4ffb0197d8464ed13585616cdfd3ff0685f4bf15f1f31bcfc40dca43</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaLgunr1XPDcNV9N0qMsfiwUBV3PJU0y2KVtatIi668363rxMAzz5r3HzEPomuAVpaW63b6tN0RiSiVRxesJWlDGeC6JYKdogVnB81IxcY4uYtxhLIRScoGG57l3oTW6y_RgU-luP_2OxvejDm30Q8w8ZLHTw-RsVvnghuk7Ax-MS5shmz5c6JMgaNvqqU0IdP7roNFZ35rgR9_pkMC5tZfoDHQX3dVfX6L3h_vt-imvXh4367sqNwzLKdeNFETqBjhAg0kpreKCO0tYoQpBhLFgGQAWqgDeACmAACONAcOxNZqzJbo5-o7Bf84uTvXOzyE9F2vKaYkVxpwm1urISkfGGBzUY2h7HfY1wfUh0_p_puwHj1psLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429080042</pqid></control><display><type>article</type><title>Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ramya, Elangovan ; Muthtamilselvan, Murugan ; Doh, Deog-Hee ; Cho, Gyeong-Rae</creator><creatorcontrib>Ramya, Elangovan ; Muthtamilselvan, Murugan ; Doh, Deog-Hee ; Cho, Gyeong-Rae</creatorcontrib><description>The transient flow of a viscous incompressible electrically conducting microstretch fluid over an infinite vertical porous plate in the presence of slanted hydromagnetic flow with an aligned angle of to and thermal radiation effects has been analyzed. The governing equations are solved analytically by using the technique of the state space approach and the inversion of the Laplace transforms is carried out using a numerical approach for varies physical parameters on the velocity, microrotation, microstretch and temperature profiles are shown graphically. In order to verify the accuracy of the present results, we have compared these results with the numerical solution by using the Crank-Nicolson implicit finite difference method. It is found that the thickness of thermal boundary layer increases with an increase in the value of thermal radiation whereas antithesis trend is seen with increasing the Prandtl number.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI170227185R</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Computational fluid dynamics ; Finite difference method ; Fluid flow ; Incompressible flow ; Laplace transforms ; Micropolar fluids ; Physical properties ; Porous plates ; Prandtl number ; Radiation effects ; Temperature profiles ; Thermal boundary layer ; Thermal radiation ; Thickness ; Unsteady flow ; Viscosity</subject><ispartof>Thermal science, 2019, Vol.23 (2 Part B), p.913-928</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ab7617abf4ffb0197d8464ed13585616cdfd3ff0685f4bf15f1f31bcfc40dca43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramya, Elangovan</creatorcontrib><creatorcontrib>Muthtamilselvan, Murugan</creatorcontrib><creatorcontrib>Doh, Deog-Hee</creatorcontrib><creatorcontrib>Cho, Gyeong-Rae</creatorcontrib><title>Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid</title><title>Thermal science</title><description>The transient flow of a viscous incompressible electrically conducting microstretch fluid over an infinite vertical porous plate in the presence of slanted hydromagnetic flow with an aligned angle of to and thermal radiation effects has been analyzed. The governing equations are solved analytically by using the technique of the state space approach and the inversion of the Laplace transforms is carried out using a numerical approach for varies physical parameters on the velocity, microrotation, microstretch and temperature profiles are shown graphically. In order to verify the accuracy of the present results, we have compared these results with the numerical solution by using the Crank-Nicolson implicit finite difference method. It is found that the thickness of thermal boundary layer increases with an increase in the value of thermal radiation whereas antithesis trend is seen with increasing the Prandtl number.</description><subject>Computational fluid dynamics</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Laplace transforms</subject><subject>Micropolar fluids</subject><subject>Physical properties</subject><subject>Porous plates</subject><subject>Prandtl number</subject><subject>Radiation effects</subject><subject>Temperature profiles</subject><subject>Thermal boundary layer</subject><subject>Thermal radiation</subject><subject>Thickness</subject><subject>Unsteady flow</subject><subject>Viscosity</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUE1LxDAQDaLgunr1XPDcNV9N0qMsfiwUBV3PJU0y2KVtatIi668363rxMAzz5r3HzEPomuAVpaW63b6tN0RiSiVRxesJWlDGeC6JYKdogVnB81IxcY4uYtxhLIRScoGG57l3oTW6y_RgU-luP_2OxvejDm30Q8w8ZLHTw-RsVvnghuk7Ax-MS5shmz5c6JMgaNvqqU0IdP7roNFZ35rgR9_pkMC5tZfoDHQX3dVfX6L3h_vt-imvXh4367sqNwzLKdeNFETqBjhAg0kpreKCO0tYoQpBhLFgGQAWqgDeACmAACONAcOxNZqzJbo5-o7Bf84uTvXOzyE9F2vKaYkVxpwm1urISkfGGBzUY2h7HfY1wfUh0_p_puwHj1psLA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ramya, Elangovan</creator><creator>Muthtamilselvan, Murugan</creator><creator>Doh, Deog-Hee</creator><creator>Cho, Gyeong-Rae</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2019</creationdate><title>Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid</title><author>Ramya, Elangovan ; Muthtamilselvan, Murugan ; Doh, Deog-Hee ; Cho, Gyeong-Rae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ab7617abf4ffb0197d8464ed13585616cdfd3ff0685f4bf15f1f31bcfc40dca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Laplace transforms</topic><topic>Micropolar fluids</topic><topic>Physical properties</topic><topic>Porous plates</topic><topic>Prandtl number</topic><topic>Radiation effects</topic><topic>Temperature profiles</topic><topic>Thermal boundary layer</topic><topic>Thermal radiation</topic><topic>Thickness</topic><topic>Unsteady flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramya, Elangovan</creatorcontrib><creatorcontrib>Muthtamilselvan, Murugan</creatorcontrib><creatorcontrib>Doh, Deog-Hee</creatorcontrib><creatorcontrib>Cho, Gyeong-Rae</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramya, Elangovan</au><au>Muthtamilselvan, Murugan</au><au>Doh, Deog-Hee</au><au>Cho, Gyeong-Rae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid</atitle><jtitle>Thermal science</jtitle><date>2019</date><risdate>2019</risdate><volume>23</volume><issue>2 Part B</issue><spage>913</spage><epage>928</epage><pages>913-928</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>The transient flow of a viscous incompressible electrically conducting microstretch fluid over an infinite vertical porous plate in the presence of slanted hydromagnetic flow with an aligned angle of to and thermal radiation effects has been analyzed. The governing equations are solved analytically by using the technique of the state space approach and the inversion of the Laplace transforms is carried out using a numerical approach for varies physical parameters on the velocity, microrotation, microstretch and temperature profiles are shown graphically. In order to verify the accuracy of the present results, we have compared these results with the numerical solution by using the Crank-Nicolson implicit finite difference method. It is found that the thickness of thermal boundary layer increases with an increase in the value of thermal radiation whereas antithesis trend is seen with increasing the Prandtl number.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI170227185R</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2019, Vol.23 (2 Part B), p.913-928
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429080042
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Computational fluid dynamics
Finite difference method
Fluid flow
Incompressible flow
Laplace transforms
Micropolar fluids
Physical properties
Porous plates
Prandtl number
Radiation effects
Temperature profiles
Thermal boundary layer
Thermal radiation
Thickness
Unsteady flow
Viscosity
title Numerical and analytical comparisons of slanted Lorentz forces on thermal radiation flow of a micropolar fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20analytical%20comparisons%20of%20slanted%20Lorentz%20forces%20on%20thermal%20radiation%20flow%20of%20a%20micropolar%20fluid&rft.jtitle=Thermal%20science&rft.au=Ramya,%20Elangovan&rft.date=2019&rft.volume=23&rft.issue=2%20Part%20B&rft.spage=913&rft.epage=928&rft.pages=913-928&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI170227185R&rft_dat=%3Cproquest_cross%3E2429080042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429080042&rft_id=info:pmid/&rfr_iscdi=true