The Radius of Metric Subregularity

There is a basic paradigm, called here the radius of well-posedness , which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2020-09, Vol.28 (3), p.451-473
Hauptverfasser: Dontchev, Asen L., Gfrerer, Helmut, Kruger, Alexander Y., Outrata, Jiří V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue 3
container_start_page 451
container_title Set-valued and variational analysis
container_volume 28
creator Dontchev, Asen L.
Gfrerer, Helmut
Kruger, Alexander Y.
Outrata, Jiří V.
description There is a basic paradigm, called here the radius of well-posedness , which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.
doi_str_mv 10.1007/s11228-019-00523-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429072723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429072723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cb74e592f565c41b8272640fbbce630bab2d7f7d222c80698b4cf914e12bbdf63</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gimA13ZydORlRBQSpCgjJbsWOXVKUpdjL032MIgo3p3vC-d9LH2DnCFQKo64hIVHLAigPkJDgdsAmWSnHIJR7-ZiGO2UmM68QAVDhhF8s3lz3XTTvErPPZo-tDa7OXwQS3GjZ1aPv9KTvy9Sa6s587Za93t8vZPV88zR9mNwtuBVY9t0ZJl1fk8yK3Ek1JigoJ3hjrCgGmNtQorxoisiUUVWmk9RVKh2RM4wsxZZfj7i50H4OLvV53Q9iml5okVaDSoEgtGls2dDEG5_UutO912GsE_eVCjy50cqG_XWhKkBihmMrblQt_0_9QnxvcX7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429072723</pqid></control><display><type>article</type><title>The Radius of Metric Subregularity</title><source>SpringerLink Journals</source><creator>Dontchev, Asen L. ; Gfrerer, Helmut ; Kruger, Alexander Y. ; Outrata, Jiří V.</creator><creatorcontrib>Dontchev, Asen L. ; Gfrerer, Helmut ; Kruger, Alexander Y. ; Outrata, Jiří V.</creatorcontrib><description>There is a basic paradigm, called here the radius of well-posedness , which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-019-00523-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Continuity (mathematics) ; Evaluation ; Ill posed problems ; Mathematics ; Mathematics and Statistics ; Optimization ; Regularity ; Well posed problems</subject><ispartof>Set-valued and variational analysis, 2020-09, Vol.28 (3), p.451-473</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cb74e592f565c41b8272640fbbce630bab2d7f7d222c80698b4cf914e12bbdf63</citedby><cites>FETCH-LOGICAL-c319t-cb74e592f565c41b8272640fbbce630bab2d7f7d222c80698b4cf914e12bbdf63</cites><orcidid>0000-0002-7861-7380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-019-00523-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-019-00523-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dontchev, Asen L.</creatorcontrib><creatorcontrib>Gfrerer, Helmut</creatorcontrib><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Outrata, Jiří V.</creatorcontrib><title>The Radius of Metric Subregularity</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>There is a basic paradigm, called here the radius of well-posedness , which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.</description><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Evaluation</subject><subject>Ill posed problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Regularity</subject><subject>Well posed problems</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gimA13ZydORlRBQSpCgjJbsWOXVKUpdjL032MIgo3p3vC-d9LH2DnCFQKo64hIVHLAigPkJDgdsAmWSnHIJR7-ZiGO2UmM68QAVDhhF8s3lz3XTTvErPPZo-tDa7OXwQS3GjZ1aPv9KTvy9Sa6s587Za93t8vZPV88zR9mNwtuBVY9t0ZJl1fk8yK3Ek1JigoJ3hjrCgGmNtQorxoisiUUVWmk9RVKh2RM4wsxZZfj7i50H4OLvV53Q9iml5okVaDSoEgtGls2dDEG5_UutO912GsE_eVCjy50cqG_XWhKkBihmMrblQt_0_9QnxvcX7Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Dontchev, Asen L.</creator><creator>Gfrerer, Helmut</creator><creator>Kruger, Alexander Y.</creator><creator>Outrata, Jiří V.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7861-7380</orcidid></search><sort><creationdate>20200901</creationdate><title>The Radius of Metric Subregularity</title><author>Dontchev, Asen L. ; Gfrerer, Helmut ; Kruger, Alexander Y. ; Outrata, Jiří V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cb74e592f565c41b8272640fbbce630bab2d7f7d222c80698b4cf914e12bbdf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Evaluation</topic><topic>Ill posed problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Regularity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dontchev, Asen L.</creatorcontrib><creatorcontrib>Gfrerer, Helmut</creatorcontrib><creatorcontrib>Kruger, Alexander Y.</creatorcontrib><creatorcontrib>Outrata, Jiří V.</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dontchev, Asen L.</au><au>Gfrerer, Helmut</au><au>Kruger, Alexander Y.</au><au>Outrata, Jiří V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Radius of Metric Subregularity</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>451</spage><epage>473</epage><pages>451-473</pages><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>There is a basic paradigm, called here the radius of well-posedness , which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-019-00523-2</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7861-7380</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1877-0533
ispartof Set-valued and variational analysis, 2020-09, Vol.28 (3), p.451-473
issn 1877-0533
1877-0541
language eng
recordid cdi_proquest_journals_2429072723
source SpringerLink Journals
subjects Analysis
Continuity (mathematics)
Evaluation
Ill posed problems
Mathematics
Mathematics and Statistics
Optimization
Regularity
Well posed problems
title The Radius of Metric Subregularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Radius%20of%20Metric%20Subregularity&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Dontchev,%20Asen%20L.&rft.date=2020-09-01&rft.volume=28&rft.issue=3&rft.spage=451&rft.epage=473&rft.pages=451-473&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-019-00523-2&rft_dat=%3Cproquest_cross%3E2429072723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429072723&rft_id=info:pmid/&rfr_iscdi=true