Contribution to creating a mathematical model of underground coal gasification process

Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2019-01, Vol.23 (5 Part B), p.3275-3282
Hauptverfasser: Petrovic, David, Djukanovic, Dusko, Petrovic, Dragana, Svrkota, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3282
container_issue 5 Part B
container_start_page 3275
container_title Thermal science
container_volume 23
creator Petrovic, David
Djukanovic, Dusko
Petrovic, Dragana
Svrkota, Igor
description Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with air, air or water vapor enriched with oxygen, or pure oxygen, may be used as gasification agents. Resulting gas that is extracted in this process may vary in chemical composition, so it is necessary to adjust it. That is the reason why it is necessary to develop a mathematical model of the underground gasification process prior to any operations in coal deposit, in order to obtain as much accurate prediction of the process as possible. Numerical calculation provides prediction of gas mixture?s chemical composition, which enables calculation of gas components? energy contents and total energy content of the gas in predicted underground coal gasification process. It is one of the main criteria in the economic assessment of underground coal gasification process. This paper, based on available data on researches in this area, provides a contribution to creation of mathematical model of underground coal gasification. nema
doi_str_mv 10.2298/TSCI180316155P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429070988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429070988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-edced8516430ea926d5e45af65ef008ae31f266c4b6dc18bd37316a75e00b5c43</originalsourceid><addsrcrecordid>eNpVkL1PwzAUxC0EEqWwMltiTvF3nBFFfFSqBBKFNXLs55KqjYvtDPz3GMrC8m54P93pDqFrShaMNfp2_douqSacKirlywmaMc5FVVPFT9GMcCmqRnN1ji5S2hKilNb1DL23Ycxx6Kc8hBHngG0Ek4dxgw3em_wB5QzW7PA-ONjh4PE0OoibGIpiG8pnY9LgC_PrcIjBQkqX6MybXYKrP52jt4f7dftUrZ4fl-3dqrJMsVyBs-C0pEpwAqZhykkQ0nglwROiDXDqmVJW9MpZqnvH61LP1BII6aUVfI5ujr4l93OClLttmOJYIjsmWENq0mhdqMWRsjGkFMF3hzjsTfzqKOl-tuv-b8e_AUDfYu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429070988</pqid></control><display><type>article</type><title>Contribution to creating a mathematical model of underground coal gasification process</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Petrovic, David ; Djukanovic, Dusko ; Petrovic, Dragana ; Svrkota, Igor</creator><creatorcontrib>Petrovic, David ; Djukanovic, Dusko ; Petrovic, Dragana ; Svrkota, Igor</creatorcontrib><description>Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with air, air or water vapor enriched with oxygen, or pure oxygen, may be used as gasification agents. Resulting gas that is extracted in this process may vary in chemical composition, so it is necessary to adjust it. That is the reason why it is necessary to develop a mathematical model of the underground gasification process prior to any operations in coal deposit, in order to obtain as much accurate prediction of the process as possible. Numerical calculation provides prediction of gas mixture?s chemical composition, which enables calculation of gas components? energy contents and total energy content of the gas in predicted underground coal gasification process. It is one of the main criteria in the economic assessment of underground coal gasification process. This paper, based on available data on researches in this area, provides a contribution to creation of mathematical model of underground coal gasification. nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI180316155P</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Chemical composition ; Coal gasification ; Degassing ; Gas mixtures ; High temperature ; Mathematical analysis ; Mathematical models ; Numerical prediction ; Oxygen enrichment ; Pyrolysis ; Reagents ; Water vapor</subject><ispartof>Thermal science, 2019-01, Vol.23 (5 Part B), p.3275-3282</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Petrovic, David</creatorcontrib><creatorcontrib>Djukanovic, Dusko</creatorcontrib><creatorcontrib>Petrovic, Dragana</creatorcontrib><creatorcontrib>Svrkota, Igor</creatorcontrib><title>Contribution to creating a mathematical model of underground coal gasification process</title><title>Thermal science</title><description>Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with air, air or water vapor enriched with oxygen, or pure oxygen, may be used as gasification agents. Resulting gas that is extracted in this process may vary in chemical composition, so it is necessary to adjust it. That is the reason why it is necessary to develop a mathematical model of the underground gasification process prior to any operations in coal deposit, in order to obtain as much accurate prediction of the process as possible. Numerical calculation provides prediction of gas mixture?s chemical composition, which enables calculation of gas components? energy contents and total energy content of the gas in predicted underground coal gasification process. It is one of the main criteria in the economic assessment of underground coal gasification process. This paper, based on available data on researches in this area, provides a contribution to creation of mathematical model of underground coal gasification. nema</description><subject>Chemical composition</subject><subject>Coal gasification</subject><subject>Degassing</subject><subject>Gas mixtures</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Oxygen enrichment</subject><subject>Pyrolysis</subject><subject>Reagents</subject><subject>Water vapor</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkL1PwzAUxC0EEqWwMltiTvF3nBFFfFSqBBKFNXLs55KqjYvtDPz3GMrC8m54P93pDqFrShaMNfp2_douqSacKirlywmaMc5FVVPFT9GMcCmqRnN1ji5S2hKilNb1DL23Ycxx6Kc8hBHngG0Ek4dxgw3em_wB5QzW7PA-ONjh4PE0OoibGIpiG8pnY9LgC_PrcIjBQkqX6MybXYKrP52jt4f7dftUrZ4fl-3dqrJMsVyBs-C0pEpwAqZhykkQ0nglwROiDXDqmVJW9MpZqnvH61LP1BII6aUVfI5ujr4l93OClLttmOJYIjsmWENq0mhdqMWRsjGkFMF3hzjsTfzqKOl-tuv-b8e_AUDfYu0</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Petrovic, David</creator><creator>Djukanovic, Dusko</creator><creator>Petrovic, Dragana</creator><creator>Svrkota, Igor</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190101</creationdate><title>Contribution to creating a mathematical model of underground coal gasification process</title><author>Petrovic, David ; Djukanovic, Dusko ; Petrovic, Dragana ; Svrkota, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-edced8516430ea926d5e45af65ef008ae31f266c4b6dc18bd37316a75e00b5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical composition</topic><topic>Coal gasification</topic><topic>Degassing</topic><topic>Gas mixtures</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Oxygen enrichment</topic><topic>Pyrolysis</topic><topic>Reagents</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, David</creatorcontrib><creatorcontrib>Djukanovic, Dusko</creatorcontrib><creatorcontrib>Petrovic, Dragana</creatorcontrib><creatorcontrib>Svrkota, Igor</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, David</au><au>Djukanovic, Dusko</au><au>Petrovic, Dragana</au><au>Svrkota, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution to creating a mathematical model of underground coal gasification process</atitle><jtitle>Thermal science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>5 Part B</issue><spage>3275</spage><epage>3282</epage><pages>3275-3282</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with air, air or water vapor enriched with oxygen, or pure oxygen, may be used as gasification agents. Resulting gas that is extracted in this process may vary in chemical composition, so it is necessary to adjust it. That is the reason why it is necessary to develop a mathematical model of the underground gasification process prior to any operations in coal deposit, in order to obtain as much accurate prediction of the process as possible. Numerical calculation provides prediction of gas mixture?s chemical composition, which enables calculation of gas components? energy contents and total energy content of the gas in predicted underground coal gasification process. It is one of the main criteria in the economic assessment of underground coal gasification process. This paper, based on available data on researches in this area, provides a contribution to creation of mathematical model of underground coal gasification. nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI180316155P</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2019-01, Vol.23 (5 Part B), p.3275-3282
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429070988
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Chemical composition
Coal gasification
Degassing
Gas mixtures
High temperature
Mathematical analysis
Mathematical models
Numerical prediction
Oxygen enrichment
Pyrolysis
Reagents
Water vapor
title Contribution to creating a mathematical model of underground coal gasification process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20to%20creating%20a%20mathematical%20model%20of%20underground%20coal%20gasification%20process&rft.jtitle=Thermal%20science&rft.au=Petrovic,%20David&rft.date=2019-01-01&rft.volume=23&rft.issue=5%20Part%20B&rft.spage=3275&rft.epage=3282&rft.pages=3275-3282&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI180316155P&rft_dat=%3Cproquest_cross%3E2429070988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429070988&rft_id=info:pmid/&rfr_iscdi=true