Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients

In this work, the fractional power series method is applied to solve the 2-D and 3-D fractional heat-like models with variable coefficients. The fractional derivatives are described in the Liouville-Caputo sense. The analytical approximate solutions and exact solutions for the 2-D and 3-D fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2019, Vol.23 (6 Part B), p.3725-3729
1. Verfasser: Sun, Jianshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3729
container_issue 6 Part B
container_start_page 3725
container_title Thermal science
container_volume 23
creator Sun, Jianshe
description In this work, the fractional power series method is applied to solve the 2-D and 3-D fractional heat-like models with variable coefficients. The fractional derivatives are described in the Liouville-Caputo sense. The analytical approximate solutions and exact solutions for the 2-D and 3-D fractional heat-like models with variable coefficients are obtained. It is shown that the proposed method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations in mathematical physics. nema
doi_str_mv 10.2298/TSCI180612256S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429070892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429070892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-1f86a663c5cb110a250e06777e5c50a18b8a6ed14025cf1bec61a2fee46dabdc3</originalsourceid><addsrcrecordid>eNpVkElPwzAUhC0EEqVw5WyJc4qXxHaOVcVSqRKHlnPkOM-qixMX22H59wSVC6cZjUaj9z6EbilZMFar-912taaKCMpYJbZnaMY4LwtJBT9HM8KrsqgVF5foKqUDIUIoJWfosDweY_hyvc6A9aD9d3YGp-DH7MKQcLC4H312Red6GNKUaY9t1Caf7B50Lrx7A9yHDnzCny7v8YeOTrcesAlgrTMOhpyu0YXVPsHNn87R6-PDbvVcbF6e1qvlpjCcyFxQq4QWgpvKtJQSzSoCREgpoTIV0VS1SgvoaElYZSxtwQiqmQUoRafbzvA5ujvtTo-9j5BycwhjnI5NDStZTSRRNZtai1PLxJBSBNsc40QhfjeUNL88m_88-Q9BIWtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429070892</pqid></control><display><type>article</type><title>Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Jianshe</creator><creatorcontrib>Sun, Jianshe</creatorcontrib><description>In this work, the fractional power series method is applied to solve the 2-D and 3-D fractional heat-like models with variable coefficients. The fractional derivatives are described in the Liouville-Caputo sense. The analytical approximate solutions and exact solutions for the 2-D and 3-D fractional heat-like models with variable coefficients are obtained. It is shown that the proposed method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations in mathematical physics. nema</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI180612256S</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Coefficients ; Differential equations ; Exact solutions ; Mathematical models ; Power series ; Three dimensional models ; Two dimensional models</subject><ispartof>Thermal science, 2019, Vol.23 (6 Part B), p.3725-3729</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-1f86a663c5cb110a250e06777e5c50a18b8a6ed14025cf1bec61a2fee46dabdc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jianshe</creatorcontrib><title>Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients</title><title>Thermal science</title><description>In this work, the fractional power series method is applied to solve the 2-D and 3-D fractional heat-like models with variable coefficients. The fractional derivatives are described in the Liouville-Caputo sense. The analytical approximate solutions and exact solutions for the 2-D and 3-D fractional heat-like models with variable coefficients are obtained. It is shown that the proposed method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations in mathematical physics. nema</description><subject>Coefficients</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Power series</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkElPwzAUhC0EEqVw5WyJc4qXxHaOVcVSqRKHlnPkOM-qixMX22H59wSVC6cZjUaj9z6EbilZMFar-912taaKCMpYJbZnaMY4LwtJBT9HM8KrsqgVF5foKqUDIUIoJWfosDweY_hyvc6A9aD9d3YGp-DH7MKQcLC4H312Red6GNKUaY9t1Caf7B50Lrx7A9yHDnzCny7v8YeOTrcesAlgrTMOhpyu0YXVPsHNn87R6-PDbvVcbF6e1qvlpjCcyFxQq4QWgpvKtJQSzSoCREgpoTIV0VS1SgvoaElYZSxtwQiqmQUoRafbzvA5ujvtTo-9j5BycwhjnI5NDStZTSRRNZtai1PLxJBSBNsc40QhfjeUNL88m_88-Q9BIWtO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Sun, Jianshe</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2019</creationdate><title>Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients</title><author>Sun, Jianshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-1f86a663c5cb110a250e06777e5c50a18b8a6ed14025cf1bec61a2fee46dabdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coefficients</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Power series</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianshe</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients</atitle><jtitle>Thermal science</jtitle><date>2019</date><risdate>2019</risdate><volume>23</volume><issue>6 Part B</issue><spage>3725</spage><epage>3729</epage><pages>3725-3729</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this work, the fractional power series method is applied to solve the 2-D and 3-D fractional heat-like models with variable coefficients. The fractional derivatives are described in the Liouville-Caputo sense. The analytical approximate solutions and exact solutions for the 2-D and 3-D fractional heat-like models with variable coefficients are obtained. It is shown that the proposed method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations in mathematical physics. nema</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI180612256S</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2019, Vol.23 (6 Part B), p.3725-3729
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2429070892
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Coefficients
Differential equations
Exact solutions
Mathematical models
Power series
Three dimensional models
Two dimensional models
title Approximate analytic solutions of multi-dimensional fractional heat-like models with variable coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20analytic%20solutions%20of%20multi-dimensional%20fractional%20heat-like%20models%20with%20variable%20coefficients&rft.jtitle=Thermal%20science&rft.au=Sun,%20Jianshe&rft.date=2019&rft.volume=23&rft.issue=6%20Part%20B&rft.spage=3725&rft.epage=3729&rft.pages=3725-3729&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI180612256S&rft_dat=%3Cproquest_cross%3E2429070892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429070892&rft_id=info:pmid/&rfr_iscdi=true