Transient DNA‐Based Nanostructures Controlled by Redox Inputs

Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-08, Vol.59 (32), p.13238-13245
Hauptverfasser: Del Grosso, Erica, Prins, Leonard J., Ricci, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13245
container_issue 32
container_start_page 13238
container_title Angewandte Chemie International Edition
container_volume 59
creator Del Grosso, Erica
Prins, Leonard J.
Ricci, Francesco
description Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion. Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.
doi_str_mv 10.1002/anie.202002180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428994100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428994100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRbK1ePUrAc-rO7ibZnKTWqoVSQep5yWYnkNImdTdBe_MRfEafxA2t9ehpfphv_pn5CbkEOgRK2U1WlThklHkNkh6RPkQMQp4k_NhrwXmYyAh65My5pWekpPEp6XHGeSqA9sntwmaVK7Fqgvv56Pvz6y5zaIJ5VtWusW3etBZdMK6rxtarle_obfCCpv4IptWmbdw5OSmylcOLfR2Q14fJYvwUzp4fp-PRLMwjiGkoEigQRZwbjIo07w7RLE0BOUqMtcilNkZSAJ0UMs0ZBQHCoNCxgbQoNB-Q653vxtZvLbpGLevWVn6lYoLJtPuGemq4o3JbO2exUBtbrjO7VUBVl5fq8lKHvPzA1d621Ws0B_w3IA-kO-C9XOH2Hzs1mk8nf-Y_X1N3Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428994100</pqid></control><display><type>article</type><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><source>Wiley Online Library</source><creator>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</creator><creatorcontrib>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</creatorcontrib><description>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion. Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002180</identifier><identifier>PMID: 32339410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA structures ; Energy dissipation ; Enzymatic activity ; Enzyme activity ; Enzymes ; Nanostructure ; nonequilibrium processes ; self-assembly ; Stability ; supramolecular chemistry</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (32), p.13238-13245</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</citedby><cites>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</cites><orcidid>0000-0003-4941-8646 ; 0000-0001-6664-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32339410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Grosso, Erica</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion. Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</description><subject>Chemical reactions</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA structures</subject><subject>Energy dissipation</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Nanostructure</subject><subject>nonequilibrium processes</subject><subject>self-assembly</subject><subject>Stability</subject><subject>supramolecular chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRbK1ePUrAc-rO7ibZnKTWqoVSQep5yWYnkNImdTdBe_MRfEafxA2t9ehpfphv_pn5CbkEOgRK2U1WlThklHkNkh6RPkQMQp4k_NhrwXmYyAh65My5pWekpPEp6XHGeSqA9sntwmaVK7Fqgvv56Pvz6y5zaIJ5VtWusW3etBZdMK6rxtarle_obfCCpv4IptWmbdw5OSmylcOLfR2Q14fJYvwUzp4fp-PRLMwjiGkoEigQRZwbjIo07w7RLE0BOUqMtcilNkZSAJ0UMs0ZBQHCoNCxgbQoNB-Q653vxtZvLbpGLevWVn6lYoLJtPuGemq4o3JbO2exUBtbrjO7VUBVl5fq8lKHvPzA1d621Ws0B_w3IA-kO-C9XOH2Hzs1mk8nf-Y_X1N3Lw</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Del Grosso, Erica</creator><creator>Prins, Leonard J.</creator><creator>Ricci, Francesco</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-4941-8646</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid></search><sort><creationdate>20200803</creationdate><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><author>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA structures</topic><topic>Energy dissipation</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Nanostructure</topic><topic>nonequilibrium processes</topic><topic>self-assembly</topic><topic>Stability</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Grosso, Erica</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Grosso, Erica</au><au>Prins, Leonard J.</au><au>Ricci, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-08-03</date><risdate>2020</risdate><volume>59</volume><issue>32</issue><spage>13238</spage><epage>13245</epage><pages>13238-13245</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion. Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32339410</pmid><doi>10.1002/anie.202002180</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4941-8646</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-08, Vol.59 (32), p.13238-13245
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2428994100
source Wiley Online Library
subjects Chemical reactions
Deoxyribonucleic acid
DNA
DNA nanotechnology
DNA structures
Energy dissipation
Enzymatic activity
Enzyme activity
Enzymes
Nanostructure
nonequilibrium processes
self-assembly
Stability
supramolecular chemistry
title Transient DNA‐Based Nanostructures Controlled by Redox Inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20DNA%E2%80%90Based%20Nanostructures%20Controlled%20by%20Redox%20Inputs&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Del%20Grosso,%20Erica&rft.date=2020-08-03&rft.volume=59&rft.issue=32&rft.spage=13238&rft.epage=13245&rft.pages=13238-13245&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002180&rft_dat=%3Cproquest_cross%3E2428994100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428994100&rft_id=info:pmid/32339410&rfr_iscdi=true