Transient DNA‐Based Nanostructures Controlled by Redox Inputs
Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled D...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-08, Vol.59 (32), p.13238-13245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13245 |
---|---|
container_issue | 32 |
container_start_page | 13238 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Del Grosso, Erica Prins, Leonard J. Ricci, Francesco |
description | Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.
Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion. |
doi_str_mv | 10.1002/anie.202002180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428994100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428994100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRbK1ePUrAc-rO7ibZnKTWqoVSQep5yWYnkNImdTdBe_MRfEafxA2t9ehpfphv_pn5CbkEOgRK2U1WlThklHkNkh6RPkQMQp4k_NhrwXmYyAh65My5pWekpPEp6XHGeSqA9sntwmaVK7Fqgvv56Pvz6y5zaIJ5VtWusW3etBZdMK6rxtarle_obfCCpv4IptWmbdw5OSmylcOLfR2Q14fJYvwUzp4fp-PRLMwjiGkoEigQRZwbjIo07w7RLE0BOUqMtcilNkZSAJ0UMs0ZBQHCoNCxgbQoNB-Q653vxtZvLbpGLevWVn6lYoLJtPuGemq4o3JbO2exUBtbrjO7VUBVl5fq8lKHvPzA1d621Ws0B_w3IA-kO-C9XOH2Hzs1mk8nf-Y_X1N3Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428994100</pqid></control><display><type>article</type><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><source>Wiley Online Library</source><creator>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</creator><creatorcontrib>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</creatorcontrib><description>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.
Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002180</identifier><identifier>PMID: 32339410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA structures ; Energy dissipation ; Enzymatic activity ; Enzyme activity ; Enzymes ; Nanostructure ; nonequilibrium processes ; self-assembly ; Stability ; supramolecular chemistry</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (32), p.13238-13245</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</citedby><cites>FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</cites><orcidid>0000-0003-4941-8646 ; 0000-0001-6664-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32339410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Grosso, Erica</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.
Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</description><subject>Chemical reactions</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA structures</subject><subject>Energy dissipation</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Nanostructure</subject><subject>nonequilibrium processes</subject><subject>self-assembly</subject><subject>Stability</subject><subject>supramolecular chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRbK1ePUrAc-rO7ibZnKTWqoVSQep5yWYnkNImdTdBe_MRfEafxA2t9ehpfphv_pn5CbkEOgRK2U1WlThklHkNkh6RPkQMQp4k_NhrwXmYyAh65My5pWekpPEp6XHGeSqA9sntwmaVK7Fqgvv56Pvz6y5zaIJ5VtWusW3etBZdMK6rxtarle_obfCCpv4IptWmbdw5OSmylcOLfR2Q14fJYvwUzp4fp-PRLMwjiGkoEigQRZwbjIo07w7RLE0BOUqMtcilNkZSAJ0UMs0ZBQHCoNCxgbQoNB-Q653vxtZvLbpGLevWVn6lYoLJtPuGemq4o3JbO2exUBtbrjO7VUBVl5fq8lKHvPzA1d621Ws0B_w3IA-kO-C9XOH2Hzs1mk8nf-Y_X1N3Lw</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Del Grosso, Erica</creator><creator>Prins, Leonard J.</creator><creator>Ricci, Francesco</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-4941-8646</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid></search><sort><creationdate>20200803</creationdate><title>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</title><author>Del Grosso, Erica ; Prins, Leonard J. ; Ricci, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-471fee46cde5f9c0288b2991e3e8e6b4c8bdd8011b7f89c201414de4b6d19ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA structures</topic><topic>Energy dissipation</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Nanostructure</topic><topic>nonequilibrium processes</topic><topic>self-assembly</topic><topic>Stability</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Grosso, Erica</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Grosso, Erica</au><au>Prins, Leonard J.</au><au>Ricci, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient DNA‐Based Nanostructures Controlled by Redox Inputs</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-08-03</date><risdate>2020</risdate><volume>59</volume><issue>32</issue><spage>13238</spage><epage>13245</epage><pages>13238-13245</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.
Transient self‐assembly of DNA‐based nanostructures is achieved by purely synthetic chemical reactions. Inspired by the redox signalling employed by cells, redox cycles of disulfide‐bond formation/breakage are employed to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32339410</pmid><doi>10.1002/anie.202002180</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4941-8646</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-08, Vol.59 (32), p.13238-13245 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2428994100 |
source | Wiley Online Library |
subjects | Chemical reactions Deoxyribonucleic acid DNA DNA nanotechnology DNA structures Energy dissipation Enzymatic activity Enzyme activity Enzymes Nanostructure nonequilibrium processes self-assembly Stability supramolecular chemistry |
title | Transient DNA‐Based Nanostructures Controlled by Redox Inputs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20DNA%E2%80%90Based%20Nanostructures%20Controlled%20by%20Redox%20Inputs&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Del%20Grosso,%20Erica&rft.date=2020-08-03&rft.volume=59&rft.issue=32&rft.spage=13238&rft.epage=13245&rft.pages=13238-13245&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002180&rft_dat=%3Cproquest_cross%3E2428994100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428994100&rft_id=info:pmid/32339410&rfr_iscdi=true |