0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets

In order to decrease the electricity consumption of hydrogen generation, hydrazine‐assisted water electrolysis is intensively investigated recently. Herein, hierarchical nanostructure of ultrathin NiCo(OH)x nanosheets (NSs) that in‐situ grown on the NiCoP nanowires (NWs) was deposited on nickel foam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2020-07, Vol.7 (14), p.3089-3097
Hauptverfasser: Li, Mujie, Zhang, Zhongyi, Xiong, Hailang, Wang, Linan, Zhuang, Shuxian, Argyle, Morris D., Tang, Yang, Yang, Xiaojin, Chen, Yongmei, Wan, Pingyu, Fan, Maohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3097
container_issue 14
container_start_page 3089
container_title ChemElectroChem
container_volume 7
creator Li, Mujie
Zhang, Zhongyi
Xiong, Hailang
Wang, Linan
Zhuang, Shuxian
Argyle, Morris D.
Tang, Yang
Yang, Xiaojin
Chen, Yongmei
Wan, Pingyu
Fan, Maohong
description In order to decrease the electricity consumption of hydrogen generation, hydrazine‐assisted water electrolysis is intensively investigated recently. Herein, hierarchical nanostructure of ultrathin NiCo(OH)x nanosheets (NSs) that in‐situ grown on the NiCoP nanowires (NWs) was deposited on nickel foam (NF) to construct NiCo(OH)x@NiCoP/NF electrode. NiCoP NWs extend the surface area, spatial utilization of NF and enhance the electron conduction to the outmost NiCo(OH)x NSs. NiCo(OH)x NSs interlace to form regular mesoporous channels, which improve the structural stability and mass transfer rate. Moreover, NiCoP NWs enhance the adsorption of protons and the transfer of electrons, while NiCo(OH)x NSs facilitate the adsorption of OHad during reaction. As a result, NiCo(OH)x@NiCoP/NF exhibits excellent activity for both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). Based on the NiCo(OH)x@NiCoP/NF||NiCo(OH)x@NiCoP/NF couples, electrolysis of hydrazine for hydrogen generation only requires an extremely low cell voltage of 0.03 V. Assisted evolution: Hierarchical self‐supported NiCo(OH)x@NiCoP/NF electrode exhibits outstanding bifunctional activity toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The electrolysis of hydrazine (N2H4) for producing hydrogen consumes an extremely low cell voltage of 0.03 V, which is less than 2 % of the traditional water electrolysis (1.54 V) based on precious Pt and RuOx electrocatalysts.
doi_str_mv 10.1002/celc.202000604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428938465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428938465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-a0ad5f0ed96e6d47c89c773e709002e577dc43b09c0ed53e95a70b443559000b3</originalsourceid><addsrcrecordid>eNqFkF1PwjAUhhejiQS59bqJ18Oztd3HJZkIJgQvVG6X0h2gZK6zHeL8Bf5sO_DrzqRJm77Pc07yet5lAMMAILyWWMphCCEARMBOvF4YpJEPYRCd_nmfewNrt44JAuA0iXreBwyBkgUZlygbo8vWKksWumzEGsmNUa9YkWlbGPGuKiQj6-IGi8OXXrtsghUa0ShdEXfmKtOk3mhbb1SBZC4qvVcGLXnY1bU2ndkhB_vtm7AbxMZeeGcrUVocfN197-l2_JhN_dn95C4bzXxJOWO-AFHwFWCRRhgVLJZJKuOYYgypqwF5HBeS0SWk0jGcYspFDEvGKOcOgCXte1fHubXRLzu0Tb7VO1O5lXnIwiSlCYu4o4ZHShptrcFVXhv1LEybB5B3hedd4flP4U5Ij8Jeldj-Q-fZeJb9up8rTYUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428938465</pqid></control><display><type>article</type><title>0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets</title><source>Wiley Online Library All Journals</source><creator>Li, Mujie ; Zhang, Zhongyi ; Xiong, Hailang ; Wang, Linan ; Zhuang, Shuxian ; Argyle, Morris D. ; Tang, Yang ; Yang, Xiaojin ; Chen, Yongmei ; Wan, Pingyu ; Fan, Maohong</creator><creatorcontrib>Li, Mujie ; Zhang, Zhongyi ; Xiong, Hailang ; Wang, Linan ; Zhuang, Shuxian ; Argyle, Morris D. ; Tang, Yang ; Yang, Xiaojin ; Chen, Yongmei ; Wan, Pingyu ; Fan, Maohong</creatorcontrib><description>In order to decrease the electricity consumption of hydrogen generation, hydrazine‐assisted water electrolysis is intensively investigated recently. Herein, hierarchical nanostructure of ultrathin NiCo(OH)x nanosheets (NSs) that in‐situ grown on the NiCoP nanowires (NWs) was deposited on nickel foam (NF) to construct NiCo(OH)x@NiCoP/NF electrode. NiCoP NWs extend the surface area, spatial utilization of NF and enhance the electron conduction to the outmost NiCo(OH)x NSs. NiCo(OH)x NSs interlace to form regular mesoporous channels, which improve the structural stability and mass transfer rate. Moreover, NiCoP NWs enhance the adsorption of protons and the transfer of electrons, while NiCo(OH)x NSs facilitate the adsorption of OHad during reaction. As a result, NiCo(OH)x@NiCoP/NF exhibits excellent activity for both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). Based on the NiCo(OH)x@NiCoP/NF||NiCo(OH)x@NiCoP/NF couples, electrolysis of hydrazine for hydrogen generation only requires an extremely low cell voltage of 0.03 V. Assisted evolution: Hierarchical self‐supported NiCo(OH)x@NiCoP/NF electrode exhibits outstanding bifunctional activity toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The electrolysis of hydrazine (N2H4) for producing hydrogen consumes an extremely low cell voltage of 0.03 V, which is less than 2 % of the traditional water electrolysis (1.54 V) based on precious Pt and RuOx electrocatalysts.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202000604</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; Electric potential ; Electricity consumption ; Electrochemistry ; Electrolysis ; energy saving ; hydrazine oxidation ; Hydrazines ; Hydrogen ; hydrogen evolution ; Hydrogen evolution reactions ; Hydrogen production ; Intermetallic compounds ; Mass transfer ; Metal foams ; Nanosheets ; Nanostructure ; Nanowires ; Oxidation ; Phosphides ; Structural stability ; Voltage</subject><ispartof>ChemElectroChem, 2020-07, Vol.7 (14), p.3089-3097</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-a0ad5f0ed96e6d47c89c773e709002e577dc43b09c0ed53e95a70b443559000b3</citedby><cites>FETCH-LOGICAL-c3544-a0ad5f0ed96e6d47c89c773e709002e577dc43b09c0ed53e95a70b443559000b3</cites><orcidid>0000-0003-0976-0519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202000604$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202000604$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Li, Mujie</creatorcontrib><creatorcontrib>Zhang, Zhongyi</creatorcontrib><creatorcontrib>Xiong, Hailang</creatorcontrib><creatorcontrib>Wang, Linan</creatorcontrib><creatorcontrib>Zhuang, Shuxian</creatorcontrib><creatorcontrib>Argyle, Morris D.</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Yang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Yongmei</creatorcontrib><creatorcontrib>Wan, Pingyu</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><title>0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets</title><title>ChemElectroChem</title><description>In order to decrease the electricity consumption of hydrogen generation, hydrazine‐assisted water electrolysis is intensively investigated recently. Herein, hierarchical nanostructure of ultrathin NiCo(OH)x nanosheets (NSs) that in‐situ grown on the NiCoP nanowires (NWs) was deposited on nickel foam (NF) to construct NiCo(OH)x@NiCoP/NF electrode. NiCoP NWs extend the surface area, spatial utilization of NF and enhance the electron conduction to the outmost NiCo(OH)x NSs. NiCo(OH)x NSs interlace to form regular mesoporous channels, which improve the structural stability and mass transfer rate. Moreover, NiCoP NWs enhance the adsorption of protons and the transfer of electrons, while NiCo(OH)x NSs facilitate the adsorption of OHad during reaction. As a result, NiCo(OH)x@NiCoP/NF exhibits excellent activity for both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). Based on the NiCo(OH)x@NiCoP/NF||NiCo(OH)x@NiCoP/NF couples, electrolysis of hydrazine for hydrogen generation only requires an extremely low cell voltage of 0.03 V. Assisted evolution: Hierarchical self‐supported NiCo(OH)x@NiCoP/NF electrode exhibits outstanding bifunctional activity toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The electrolysis of hydrazine (N2H4) for producing hydrogen consumes an extremely low cell voltage of 0.03 V, which is less than 2 % of the traditional water electrolysis (1.54 V) based on precious Pt and RuOx electrocatalysts.</description><subject>Adsorption</subject><subject>Electric potential</subject><subject>Electricity consumption</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>energy saving</subject><subject>hydrazine oxidation</subject><subject>Hydrazines</subject><subject>Hydrogen</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Intermetallic compounds</subject><subject>Mass transfer</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Phosphides</subject><subject>Structural stability</subject><subject>Voltage</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1PwjAUhhejiQS59bqJ18Oztd3HJZkIJgQvVG6X0h2gZK6zHeL8Bf5sO_DrzqRJm77Pc07yet5lAMMAILyWWMphCCEARMBOvF4YpJEPYRCd_nmfewNrt44JAuA0iXreBwyBkgUZlygbo8vWKksWumzEGsmNUa9YkWlbGPGuKiQj6-IGi8OXXrtsghUa0ShdEXfmKtOk3mhbb1SBZC4qvVcGLXnY1bU2ndkhB_vtm7AbxMZeeGcrUVocfN197-l2_JhN_dn95C4bzXxJOWO-AFHwFWCRRhgVLJZJKuOYYgypqwF5HBeS0SWk0jGcYspFDEvGKOcOgCXte1fHubXRLzu0Tb7VO1O5lXnIwiSlCYu4o4ZHShptrcFVXhv1LEybB5B3hedd4flP4U5Ij8Jeldj-Q-fZeJb9up8rTYUk</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Li, Mujie</creator><creator>Zhang, Zhongyi</creator><creator>Xiong, Hailang</creator><creator>Wang, Linan</creator><creator>Zhuang, Shuxian</creator><creator>Argyle, Morris D.</creator><creator>Tang, Yang</creator><creator>Yang, Xiaojin</creator><creator>Chen, Yongmei</creator><creator>Wan, Pingyu</creator><creator>Fan, Maohong</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0976-0519</orcidid></search><sort><creationdate>20200716</creationdate><title>0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets</title><author>Li, Mujie ; Zhang, Zhongyi ; Xiong, Hailang ; Wang, Linan ; Zhuang, Shuxian ; Argyle, Morris D. ; Tang, Yang ; Yang, Xiaojin ; Chen, Yongmei ; Wan, Pingyu ; Fan, Maohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-a0ad5f0ed96e6d47c89c773e709002e577dc43b09c0ed53e95a70b443559000b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Electric potential</topic><topic>Electricity consumption</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>energy saving</topic><topic>hydrazine oxidation</topic><topic>Hydrazines</topic><topic>Hydrogen</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Intermetallic compounds</topic><topic>Mass transfer</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Phosphides</topic><topic>Structural stability</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mujie</creatorcontrib><creatorcontrib>Zhang, Zhongyi</creatorcontrib><creatorcontrib>Xiong, Hailang</creatorcontrib><creatorcontrib>Wang, Linan</creatorcontrib><creatorcontrib>Zhuang, Shuxian</creatorcontrib><creatorcontrib>Argyle, Morris D.</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Yang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Yongmei</creatorcontrib><creatorcontrib>Wan, Pingyu</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mujie</au><au>Zhang, Zhongyi</au><au>Xiong, Hailang</au><au>Wang, Linan</au><au>Zhuang, Shuxian</au><au>Argyle, Morris D.</au><au>Tang, Yang</au><au>Yang, Xiaojin</au><au>Chen, Yongmei</au><au>Wan, Pingyu</au><au>Fan, Maohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets</atitle><jtitle>ChemElectroChem</jtitle><date>2020-07-16</date><risdate>2020</risdate><volume>7</volume><issue>14</issue><spage>3089</spage><epage>3097</epage><pages>3089-3097</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>In order to decrease the electricity consumption of hydrogen generation, hydrazine‐assisted water electrolysis is intensively investigated recently. Herein, hierarchical nanostructure of ultrathin NiCo(OH)x nanosheets (NSs) that in‐situ grown on the NiCoP nanowires (NWs) was deposited on nickel foam (NF) to construct NiCo(OH)x@NiCoP/NF electrode. NiCoP NWs extend the surface area, spatial utilization of NF and enhance the electron conduction to the outmost NiCo(OH)x NSs. NiCo(OH)x NSs interlace to form regular mesoporous channels, which improve the structural stability and mass transfer rate. Moreover, NiCoP NWs enhance the adsorption of protons and the transfer of electrons, while NiCo(OH)x NSs facilitate the adsorption of OHad during reaction. As a result, NiCo(OH)x@NiCoP/NF exhibits excellent activity for both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). Based on the NiCo(OH)x@NiCoP/NF||NiCo(OH)x@NiCoP/NF couples, electrolysis of hydrazine for hydrogen generation only requires an extremely low cell voltage of 0.03 V. Assisted evolution: Hierarchical self‐supported NiCo(OH)x@NiCoP/NF electrode exhibits outstanding bifunctional activity toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The electrolysis of hydrazine (N2H4) for producing hydrogen consumes an extremely low cell voltage of 0.03 V, which is less than 2 % of the traditional water electrolysis (1.54 V) based on precious Pt and RuOx electrocatalysts.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.202000604</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0976-0519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2020-07, Vol.7 (14), p.3089-3097
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2428938465
source Wiley Online Library All Journals
subjects Adsorption
Electric potential
Electricity consumption
Electrochemistry
Electrolysis
energy saving
hydrazine oxidation
Hydrazines
Hydrogen
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Intermetallic compounds
Mass transfer
Metal foams
Nanosheets
Nanostructure
Nanowires
Oxidation
Phosphides
Structural stability
Voltage
title 0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=0.03%20V%20Electrolysis%20Voltage%20Driven%20Hydrazine%20Assisted%20Hydrogen%20Generation%20on%20NiCo%20phosphide%20Nanowires%20Supported%20NiCoHydroxide%20Nanosheets&rft.jtitle=ChemElectroChem&rft.au=Li,%20Mujie&rft.date=2020-07-16&rft.volume=7&rft.issue=14&rft.spage=3089&rft.epage=3097&rft.pages=3089-3097&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202000604&rft_dat=%3Cproquest_cross%3E2428938465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428938465&rft_id=info:pmid/&rfr_iscdi=true