Remark on rates of convergence to extreme value distributions via the Stein equations

Consider the maximum of independent and identically distributed random variables. The classical result says that the renormalized sample maximum converges to an extreme value distributions, under certain conditions on the distribution function. In the present paper, we shall study the uniform rate o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremes (Boston) 2020-09, Vol.23 (3), p.411-423
Hauptverfasser: Kusumoto, Hideaki, Takeuchi, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 411
container_title Extremes (Boston)
container_volume 23
creator Kusumoto, Hideaki
Takeuchi, Atsushi
description Consider the maximum of independent and identically distributed random variables. The classical result says that the renormalized sample maximum converges to an extreme value distributions, under certain conditions on the distribution function. In the present paper, we shall study the uniform rate of the convergence with respect to the Kolmogorov distance in the framework of the Stein equations. Some typical examples are raised in the paper.
doi_str_mv 10.1007/s10687-020-00380-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428788043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428788043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1bd6cf03fae77335451aa82b3157a17c443a7191fc53e0397b7b2cf8d99fb4e03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZbDbJUYr_QBDUgreQTSd1a7tpk2zRb29sBW-eZhjeezPzQ-ic0UtGqbxKjDZKElpRQilXlIgDNGJCVkQz8XZYeq4awrTWx-gkpQUtJtaIEZo-w8rGDxx6HG2GhIPHLvRbiHPoHeAcMHzmCCvAW7scAM-6lGPXDrkLfcLbzuL8DvglQ9dj2Ax2Nz9FR94uE5z91jGa3t68Tu7J49Pdw-T6kTiuRCasnTXOU-4tSMm5qAWzVlUtL5dbJl1dcyuZZt4JDpRr2cq2cl7NtPZtXSZjdLHPXcewGSBlswhD7MtKU9WVkkrRmhdVtVe5GFKK4M06duXrL8Oo-cFn9vhMwWd2-IwoJr43pSLu5xD_ov9xfQNMOXNG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428788043</pqid></control><display><type>article</type><title>Remark on rates of convergence to extreme value distributions via the Stein equations</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kusumoto, Hideaki ; Takeuchi, Atsushi</creator><creatorcontrib>Kusumoto, Hideaki ; Takeuchi, Atsushi</creatorcontrib><description>Consider the maximum of independent and identically distributed random variables. The classical result says that the renormalized sample maximum converges to an extreme value distributions, under certain conditions on the distribution function. In the present paper, we shall study the uniform rate of the convergence with respect to the Kolmogorov distance in the framework of the Stein equations. Some typical examples are raised in the paper.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-020-00380-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Civil Engineering ; Convergence ; Distribution functions ; Economics ; Environmental Management ; Extreme values ; Finance ; Hydrogeology ; Insurance ; Management ; Mathematical analysis ; Mathematics and Statistics ; Quality Control ; Random variables ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business</subject><ispartof>Extremes (Boston), 2020-09, Vol.23 (3), p.411-423</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1bd6cf03fae77335451aa82b3157a17c443a7191fc53e0397b7b2cf8d99fb4e03</citedby><cites>FETCH-LOGICAL-c385t-1bd6cf03fae77335451aa82b3157a17c443a7191fc53e0397b7b2cf8d99fb4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10687-020-00380-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10687-020-00380-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kusumoto, Hideaki</creatorcontrib><creatorcontrib>Takeuchi, Atsushi</creatorcontrib><title>Remark on rates of convergence to extreme value distributions via the Stein equations</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>Consider the maximum of independent and identically distributed random variables. The classical result says that the renormalized sample maximum converges to an extreme value distributions, under certain conditions on the distribution function. In the present paper, we shall study the uniform rate of the convergence with respect to the Kolmogorov distance in the framework of the Stein equations. Some typical examples are raised in the paper.</description><subject>Civil Engineering</subject><subject>Convergence</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Extreme values</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematics and Statistics</subject><subject>Quality Control</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZbDbJUYr_QBDUgreQTSd1a7tpk2zRb29sBW-eZhjeezPzQ-ic0UtGqbxKjDZKElpRQilXlIgDNGJCVkQz8XZYeq4awrTWx-gkpQUtJtaIEZo-w8rGDxx6HG2GhIPHLvRbiHPoHeAcMHzmCCvAW7scAM-6lGPXDrkLfcLbzuL8DvglQ9dj2Ax2Nz9FR94uE5z91jGa3t68Tu7J49Pdw-T6kTiuRCasnTXOU-4tSMm5qAWzVlUtL5dbJl1dcyuZZt4JDpRr2cq2cl7NtPZtXSZjdLHPXcewGSBlswhD7MtKU9WVkkrRmhdVtVe5GFKK4M06duXrL8Oo-cFn9vhMwWd2-IwoJr43pSLu5xD_ov9xfQNMOXNG</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kusumoto, Hideaki</creator><creator>Takeuchi, Atsushi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Remark on rates of convergence to extreme value distributions via the Stein equations</title><author>Kusumoto, Hideaki ; Takeuchi, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1bd6cf03fae77335451aa82b3157a17c443a7191fc53e0397b7b2cf8d99fb4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Civil Engineering</topic><topic>Convergence</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Extreme values</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematics and Statistics</topic><topic>Quality Control</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusumoto, Hideaki</creatorcontrib><creatorcontrib>Takeuchi, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusumoto, Hideaki</au><au>Takeuchi, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remark on rates of convergence to extreme value distributions via the Stein equations</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>23</volume><issue>3</issue><spage>411</spage><epage>423</epage><pages>411-423</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>Consider the maximum of independent and identically distributed random variables. The classical result says that the renormalized sample maximum converges to an extreme value distributions, under certain conditions on the distribution function. In the present paper, we shall study the uniform rate of the convergence with respect to the Kolmogorov distance in the framework of the Stein equations. Some typical examples are raised in the paper.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10687-020-00380-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-1999
ispartof Extremes (Boston), 2020-09, Vol.23 (3), p.411-423
issn 1386-1999
1572-915X
language eng
recordid cdi_proquest_journals_2428788043
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Convergence
Distribution functions
Economics
Environmental Management
Extreme values
Finance
Hydrogeology
Insurance
Management
Mathematical analysis
Mathematics and Statistics
Quality Control
Random variables
Reliability
Safety and Risk
Statistics
Statistics for Business
title Remark on rates of convergence to extreme value distributions via the Stein equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remark%20on%20rates%20of%20convergence%20to%20extreme%20value%20distributions%20via%20the%20Stein%20equations&rft.jtitle=Extremes%20(Boston)&rft.au=Kusumoto,%20Hideaki&rft.date=2020-09-01&rft.volume=23&rft.issue=3&rft.spage=411&rft.epage=423&rft.pages=411-423&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-020-00380-5&rft_dat=%3Cproquest_cross%3E2428788043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428788043&rft_id=info:pmid/&rfr_iscdi=true