Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid
Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous mater...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2016-01, Vol.51 (2), p.1066-1073 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1073 |
---|---|
container_issue | 2 |
container_start_page | 1066 |
container_title | Journal of materials science |
container_volume | 51 |
creator | Matsushita, Sachiko Matsutani, Akihiro Morii, Yasushi Kobayashi, Daito Nishioka, Kunio Shoji, Dai Sato, Mina Tatsuma, Tetsu Sannomiya, Takumi Isobe, Toshihiro Nakajima, Akira |
description | Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations. |
doi_str_mv | 10.1007/s10853-015-9436-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428281835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428281835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</originalsourceid><addsrcrecordid>eNp9kc9OHSEUxolpE2-1D9CVJK6pHBj-uDQ32jYxcaGuCcPAFTN3GIGJ8RF863Idk-66As75ft_J-UDoB9CfQKm6KEC14ISCIJcdl0QfoQ0IxUmnKf-CNpQyRlgn4Rh9K-WZUioUgw1639rRLaOtMU3YTgMOts_Rre8UcH1NZIh7P5VWsCN2aT-Pvno8P6Wapuhw36idnXGpeXF1yb58iFLxw8EgLzWOHj_EO4ZLnHbt7vJbqXYsOLaRMV-M8WWJwyn6GlrRf_88T9DjzfXD9je5vfv1Z3t1S5xgtJIBILhAYQidt31npZdBac6dV8KqTgNzsve804JZqTXTzrYmG7jolfeXip-g89V3zull8aWa57TktlsxrGMNAM1FU8GqcjmVkn0wc457m98MUHNI3KyJm5a4OSRudGPYypSmnXY-_3P-H3S2QsEmY3c5FvN4zyjI9kUgQUn-FwSXj8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428281835</pqid></control><display><type>article</type><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><source>Springer Nature - Complete Springer Journals</source><creator>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</creator><creatorcontrib>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</creatorcontrib><description>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9436-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>absorbance ; Acetonitrile ; air ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chemists ; Classical Mechanics ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; electrolytes ; Infrared radiation ; light ; Materials Science ; Mathematical analysis ; Nonaqueous electrolytes ; Original Paper ; Photonic band gaps ; Photonic crystals ; Physicists ; Polymer Sciences ; reflectance ; refractive index ; Refractivity ; Rutile ; Single crystals ; Solid Mechanics ; Titanium dioxide ; wavelengths</subject><ispartof>Journal of materials science, 2016-01, Vol.51 (2), p.1066-1073</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</citedby><cites>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</cites><orcidid>0000-0001-8699-295X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9436-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9436-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Matsushita, Sachiko</creatorcontrib><creatorcontrib>Matsutani, Akihiro</creatorcontrib><creatorcontrib>Morii, Yasushi</creatorcontrib><creatorcontrib>Kobayashi, Daito</creatorcontrib><creatorcontrib>Nishioka, Kunio</creatorcontrib><creatorcontrib>Shoji, Dai</creatorcontrib><creatorcontrib>Sato, Mina</creatorcontrib><creatorcontrib>Tatsuma, Tetsu</creatorcontrib><creatorcontrib>Sannomiya, Takumi</creatorcontrib><creatorcontrib>Isobe, Toshihiro</creatorcontrib><creatorcontrib>Nakajima, Akira</creatorcontrib><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</description><subject>absorbance</subject><subject>Acetonitrile</subject><subject>air</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chemists</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>electrolytes</subject><subject>Infrared radiation</subject><subject>light</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nonaqueous electrolytes</subject><subject>Original Paper</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Physicists</subject><subject>Polymer Sciences</subject><subject>reflectance</subject><subject>refractive index</subject><subject>Refractivity</subject><subject>Rutile</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>wavelengths</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9OHSEUxolpE2-1D9CVJK6pHBj-uDQ32jYxcaGuCcPAFTN3GIGJ8RF863Idk-66As75ft_J-UDoB9CfQKm6KEC14ISCIJcdl0QfoQ0IxUmnKf-CNpQyRlgn4Rh9K-WZUioUgw1639rRLaOtMU3YTgMOts_Rre8UcH1NZIh7P5VWsCN2aT-Pvno8P6Wapuhw36idnXGpeXF1yb58iFLxw8EgLzWOHj_EO4ZLnHbt7vJbqXYsOLaRMV-M8WWJwyn6GlrRf_88T9DjzfXD9je5vfv1Z3t1S5xgtJIBILhAYQidt31npZdBac6dV8KqTgNzsve804JZqTXTzrYmG7jolfeXip-g89V3zull8aWa57TktlsxrGMNAM1FU8GqcjmVkn0wc457m98MUHNI3KyJm5a4OSRudGPYypSmnXY-_3P-H3S2QsEmY3c5FvN4zyjI9kUgQUn-FwSXj8U</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Matsushita, Sachiko</creator><creator>Matsutani, Akihiro</creator><creator>Morii, Yasushi</creator><creator>Kobayashi, Daito</creator><creator>Nishioka, Kunio</creator><creator>Shoji, Dai</creator><creator>Sato, Mina</creator><creator>Tatsuma, Tetsu</creator><creator>Sannomiya, Takumi</creator><creator>Isobe, Toshihiro</creator><creator>Nakajima, Akira</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8699-295X</orcidid></search><sort><creationdate>20160101</creationdate><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><author>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>absorbance</topic><topic>Acetonitrile</topic><topic>air</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chemists</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>electrolytes</topic><topic>Infrared radiation</topic><topic>light</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nonaqueous electrolytes</topic><topic>Original Paper</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Physicists</topic><topic>Polymer Sciences</topic><topic>reflectance</topic><topic>refractive index</topic><topic>Refractivity</topic><topic>Rutile</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsushita, Sachiko</creatorcontrib><creatorcontrib>Matsutani, Akihiro</creatorcontrib><creatorcontrib>Morii, Yasushi</creatorcontrib><creatorcontrib>Kobayashi, Daito</creatorcontrib><creatorcontrib>Nishioka, Kunio</creatorcontrib><creatorcontrib>Shoji, Dai</creatorcontrib><creatorcontrib>Sato, Mina</creatorcontrib><creatorcontrib>Tatsuma, Tetsu</creatorcontrib><creatorcontrib>Sannomiya, Takumi</creatorcontrib><creatorcontrib>Isobe, Toshihiro</creatorcontrib><creatorcontrib>Nakajima, Akira</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsushita, Sachiko</au><au>Matsutani, Akihiro</au><au>Morii, Yasushi</au><au>Kobayashi, Daito</au><au>Nishioka, Kunio</au><au>Shoji, Dai</au><au>Sato, Mina</au><au>Tatsuma, Tetsu</au><au>Sannomiya, Takumi</au><au>Isobe, Toshihiro</au><au>Nakajima, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><spage>1066</spage><epage>1073</epage><pages>1066-1073</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9436-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8699-295X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2016-01, Vol.51 (2), p.1066-1073 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2428281835 |
source | Springer Nature - Complete Springer Journals |
subjects | absorbance Acetonitrile air Characterization and Evaluation of Materials Chemistry and Materials Science Chemists Classical Mechanics Crystal structure Crystallography and Scattering Methods Crystals electrolytes Infrared radiation light Materials Science Mathematical analysis Nonaqueous electrolytes Original Paper Photonic band gaps Photonic crystals Physicists Polymer Sciences reflectance refractive index Refractivity Rutile Single crystals Solid Mechanics Titanium dioxide wavelengths |
title | Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20and%20fabrication%20of%20two-dimensional%20complete%20photonic%20bandgap%20structures%20composed%20of%20rutile%20TiO2%20single%20crystals%20in%20air/liquid&rft.jtitle=Journal%20of%20materials%20science&rft.au=Matsushita,%20Sachiko&rft.date=2016-01-01&rft.volume=51&rft.issue=2&rft.spage=1066&rft.epage=1073&rft.pages=1066-1073&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9436-8&rft_dat=%3Cproquest_cross%3E2428281835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428281835&rft_id=info:pmid/&rfr_iscdi=true |