Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid

Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2016-01, Vol.51 (2), p.1066-1073
Hauptverfasser: Matsushita, Sachiko, Matsutani, Akihiro, Morii, Yasushi, Kobayashi, Daito, Nishioka, Kunio, Shoji, Dai, Sato, Mina, Tatsuma, Tetsu, Sannomiya, Takumi, Isobe, Toshihiro, Nakajima, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1073
container_issue 2
container_start_page 1066
container_title Journal of materials science
container_volume 51
creator Matsushita, Sachiko
Matsutani, Akihiro
Morii, Yasushi
Kobayashi, Daito
Nishioka, Kunio
Shoji, Dai
Sato, Mina
Tatsuma, Tetsu
Sannomiya, Takumi
Isobe, Toshihiro
Nakajima, Akira
description Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.
doi_str_mv 10.1007/s10853-015-9436-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2428281835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428281835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</originalsourceid><addsrcrecordid>eNp9kc9OHSEUxolpE2-1D9CVJK6pHBj-uDQ32jYxcaGuCcPAFTN3GIGJ8RF863Idk-66As75ft_J-UDoB9CfQKm6KEC14ISCIJcdl0QfoQ0IxUmnKf-CNpQyRlgn4Rh9K-WZUioUgw1639rRLaOtMU3YTgMOts_Rre8UcH1NZIh7P5VWsCN2aT-Pvno8P6Wapuhw36idnXGpeXF1yb58iFLxw8EgLzWOHj_EO4ZLnHbt7vJbqXYsOLaRMV-M8WWJwyn6GlrRf_88T9DjzfXD9je5vfv1Z3t1S5xgtJIBILhAYQidt31npZdBac6dV8KqTgNzsve804JZqTXTzrYmG7jolfeXip-g89V3zull8aWa57TktlsxrGMNAM1FU8GqcjmVkn0wc457m98MUHNI3KyJm5a4OSRudGPYypSmnXY-_3P-H3S2QsEmY3c5FvN4zyjI9kUgQUn-FwSXj8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428281835</pqid></control><display><type>article</type><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><source>Springer Nature - Complete Springer Journals</source><creator>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</creator><creatorcontrib>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</creatorcontrib><description>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9436-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>absorbance ; Acetonitrile ; air ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chemists ; Classical Mechanics ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; electrolytes ; Infrared radiation ; light ; Materials Science ; Mathematical analysis ; Nonaqueous electrolytes ; Original Paper ; Photonic band gaps ; Photonic crystals ; Physicists ; Polymer Sciences ; reflectance ; refractive index ; Refractivity ; Rutile ; Single crystals ; Solid Mechanics ; Titanium dioxide ; wavelengths</subject><ispartof>Journal of materials science, 2016-01, Vol.51 (2), p.1066-1073</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</citedby><cites>FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</cites><orcidid>0000-0001-8699-295X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9436-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9436-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Matsushita, Sachiko</creatorcontrib><creatorcontrib>Matsutani, Akihiro</creatorcontrib><creatorcontrib>Morii, Yasushi</creatorcontrib><creatorcontrib>Kobayashi, Daito</creatorcontrib><creatorcontrib>Nishioka, Kunio</creatorcontrib><creatorcontrib>Shoji, Dai</creatorcontrib><creatorcontrib>Sato, Mina</creatorcontrib><creatorcontrib>Tatsuma, Tetsu</creatorcontrib><creatorcontrib>Sannomiya, Takumi</creatorcontrib><creatorcontrib>Isobe, Toshihiro</creatorcontrib><creatorcontrib>Nakajima, Akira</creatorcontrib><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</description><subject>absorbance</subject><subject>Acetonitrile</subject><subject>air</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chemists</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>electrolytes</subject><subject>Infrared radiation</subject><subject>light</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nonaqueous electrolytes</subject><subject>Original Paper</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Physicists</subject><subject>Polymer Sciences</subject><subject>reflectance</subject><subject>refractive index</subject><subject>Refractivity</subject><subject>Rutile</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>wavelengths</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9OHSEUxolpE2-1D9CVJK6pHBj-uDQ32jYxcaGuCcPAFTN3GIGJ8RF863Idk-66As75ft_J-UDoB9CfQKm6KEC14ISCIJcdl0QfoQ0IxUmnKf-CNpQyRlgn4Rh9K-WZUioUgw1639rRLaOtMU3YTgMOts_Rre8UcH1NZIh7P5VWsCN2aT-Pvno8P6Wapuhw36idnXGpeXF1yb58iFLxw8EgLzWOHj_EO4ZLnHbt7vJbqXYsOLaRMV-M8WWJwyn6GlrRf_88T9DjzfXD9je5vfv1Z3t1S5xgtJIBILhAYQidt31npZdBac6dV8KqTgNzsve804JZqTXTzrYmG7jolfeXip-g89V3zull8aWa57TktlsxrGMNAM1FU8GqcjmVkn0wc457m98MUHNI3KyJm5a4OSRudGPYypSmnXY-_3P-H3S2QsEmY3c5FvN4zyjI9kUgQUn-FwSXj8U</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Matsushita, Sachiko</creator><creator>Matsutani, Akihiro</creator><creator>Morii, Yasushi</creator><creator>Kobayashi, Daito</creator><creator>Nishioka, Kunio</creator><creator>Shoji, Dai</creator><creator>Sato, Mina</creator><creator>Tatsuma, Tetsu</creator><creator>Sannomiya, Takumi</creator><creator>Isobe, Toshihiro</creator><creator>Nakajima, Akira</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8699-295X</orcidid></search><sort><creationdate>20160101</creationdate><title>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</title><author>Matsushita, Sachiko ; Matsutani, Akihiro ; Morii, Yasushi ; Kobayashi, Daito ; Nishioka, Kunio ; Shoji, Dai ; Sato, Mina ; Tatsuma, Tetsu ; Sannomiya, Takumi ; Isobe, Toshihiro ; Nakajima, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-d11fcf01df4eab4a6e6f7833ce75a74812c6be34852a68828ca33c2d35b7ee973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>absorbance</topic><topic>Acetonitrile</topic><topic>air</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chemists</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>electrolytes</topic><topic>Infrared radiation</topic><topic>light</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nonaqueous electrolytes</topic><topic>Original Paper</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Physicists</topic><topic>Polymer Sciences</topic><topic>reflectance</topic><topic>refractive index</topic><topic>Refractivity</topic><topic>Rutile</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsushita, Sachiko</creatorcontrib><creatorcontrib>Matsutani, Akihiro</creatorcontrib><creatorcontrib>Morii, Yasushi</creatorcontrib><creatorcontrib>Kobayashi, Daito</creatorcontrib><creatorcontrib>Nishioka, Kunio</creatorcontrib><creatorcontrib>Shoji, Dai</creatorcontrib><creatorcontrib>Sato, Mina</creatorcontrib><creatorcontrib>Tatsuma, Tetsu</creatorcontrib><creatorcontrib>Sannomiya, Takumi</creatorcontrib><creatorcontrib>Isobe, Toshihiro</creatorcontrib><creatorcontrib>Nakajima, Akira</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsushita, Sachiko</au><au>Matsutani, Akihiro</au><au>Morii, Yasushi</au><au>Kobayashi, Daito</au><au>Nishioka, Kunio</au><au>Shoji, Dai</au><au>Sato, Mina</au><au>Tatsuma, Tetsu</au><au>Sannomiya, Takumi</au><au>Isobe, Toshihiro</au><au>Nakajima, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><spage>1066</spage><epage>1073</epage><pages>1066-1073</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO₂) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO₂ pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO₂ refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO₂ with and without Nb doping, i.e., photocatalytic TiO₂ and high electron conductive TiO₂, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9436-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8699-295X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-01, Vol.51 (2), p.1066-1073
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2428281835
source Springer Nature - Complete Springer Journals
subjects absorbance
Acetonitrile
air
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chemists
Classical Mechanics
Crystal structure
Crystallography and Scattering Methods
Crystals
electrolytes
Infrared radiation
light
Materials Science
Mathematical analysis
Nonaqueous electrolytes
Original Paper
Photonic band gaps
Photonic crystals
Physicists
Polymer Sciences
reflectance
refractive index
Refractivity
Rutile
Single crystals
Solid Mechanics
Titanium dioxide
wavelengths
title Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20and%20fabrication%20of%20two-dimensional%20complete%20photonic%20bandgap%20structures%20composed%20of%20rutile%20TiO2%20single%20crystals%20in%20air/liquid&rft.jtitle=Journal%20of%20materials%20science&rft.au=Matsushita,%20Sachiko&rft.date=2016-01-01&rft.volume=51&rft.issue=2&rft.spage=1066&rft.epage=1073&rft.pages=1066-1073&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9436-8&rft_dat=%3Cproquest_cross%3E2428281835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428281835&rft_id=info:pmid/&rfr_iscdi=true