Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems

In this article, we introduce a new class of p-type transparent conductive oxide (TCO) CuCrO 2 (150 nm) heterogeneously integrated onto fluorine doped tin oxide (FTO)/glass for forming-free memristor-based neuromorphic applications. The fabricated Al/CuCrO 2 /FTO memristors demonstrate a reliable bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-08, Vol.67 (8), p.3451-3458
Hauptverfasser: Boppidi, Pavan Kumar Reddy, Suresh, Bharathwaj, Zhussupbekova, Ainur, Biswas, Pranab, Mullarkey, Daragh, Raj, P. Michael Preetam, Shvets, Igor V., Kundu, Souvik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3458
container_issue 8
container_start_page 3451
container_title IEEE transactions on electron devices
container_volume 67
creator Boppidi, Pavan Kumar Reddy
Suresh, Bharathwaj
Zhussupbekova, Ainur
Biswas, Pranab
Mullarkey, Daragh
Raj, P. Michael Preetam
Shvets, Igor V.
Kundu, Souvik
description In this article, we introduce a new class of p-type transparent conductive oxide (TCO) CuCrO 2 (150 nm) heterogeneously integrated onto fluorine doped tin oxide (FTO)/glass for forming-free memristor-based neuromorphic applications. The fabricated Al/CuCrO 2 /FTO memristors demonstrate a reliable bipolar resistive switching with an ON/ OFF ratio of 1000. The retention of the device was found to be steady even beyond 10 6 s, which demonstrates its nonvolatility. The current-voltage ( {I} - {V} ) characteristics were fit to evaluate its transport properties and a band diagram was projected to have a better insight of the device operational principles. To validate the experimental observations, a new model has been developed, and the simulated {I} - {V} behavior was analogous to the experimental one. Efforts were then devoted to observe long-term potentiation (LTP) and long-term depression (LTD) utilizing identical but opposite pulses to evaluate the device's efficacy for synaptic applications. The synaptic behavior was well controlled by the pulse (pulse amplitude and width) variations. The conductance change was found to be symmetric and then saturated, which reflects the popular biological Hebbian rules. Finally, a long-term synaptic modulation has been implemented by establishing the spike rate dependent plasticity (SRDP) rule, which is a part of spiking neural networks and advantageous to mimic the brain's capability at low power. All the obtained experimental results were systematically corroborated by neural network simulation. Overall, our approach provides a new road map toward the development of TCO-based alternative memristors, which can be employed to mimic the synaptic plasticity for energy-efficient bioinspired neuromorphic systems and non-von Neumann computer architectures.
doi_str_mv 10.1109/TED.2020.2999324
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2427620847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118968</ieee_id><sourcerecordid>2427620847</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e18e2bd5dd1af1edd18d8ce43299018be04b10458d7143a60808aaa5e45f73cb3</originalsourceid><addsrcrecordid>eNotz8tLw0AQBvBFFKzVu-BlwXPqvpLsHiWtD6hW2noOm2RitzYPdzeWXvzbXamH4WPgxzcMQteUTCgl6m49m04YYWTClFKciRM0onGcRioRySkaEUJlpLjk5-jCuW1YEyHYCP3M6tqUBlqPl-CM8-Yb8GpvfLkx7QfWbYVXvfkEvNQe8BR6aKs__LbTwZbGH7BpscavsMfZkNkFwy_Q2FDUWVyHCXBwpthBIIPtms72G1Pi1cF5aNwlOqv1zsHVf47R-8NsnT1F88Xjc3Y_jwxNYx8BlcCKKq4qqmsKIWQlSxA8PBseK4CIghIRyyqlguuESCK11jGIuE55WfAxuj329rb7GsD5fNsNtg0ncyZYmjAiRRrUzVEZAMh7axptD7miVKpE8l8mQGr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427620847</pqid></control><display><type>article</type><title>Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Boppidi, Pavan Kumar Reddy ; Suresh, Bharathwaj ; Zhussupbekova, Ainur ; Biswas, Pranab ; Mullarkey, Daragh ; Raj, P. Michael Preetam ; Shvets, Igor V. ; Kundu, Souvik</creator><creatorcontrib>Boppidi, Pavan Kumar Reddy ; Suresh, Bharathwaj ; Zhussupbekova, Ainur ; Biswas, Pranab ; Mullarkey, Daragh ; Raj, P. Michael Preetam ; Shvets, Igor V. ; Kundu, Souvik</creatorcontrib><description><![CDATA[In this article, we introduce a new class of p-type transparent conductive oxide (TCO) CuCrO 2 (150 nm) heterogeneously integrated onto fluorine doped tin oxide (FTO)/glass for forming-free memristor-based neuromorphic applications. The fabricated Al/CuCrO 2 /FTO memristors demonstrate a reliable bipolar resistive switching with an ON/ OFF ratio of 1000. The retention of the device was found to be steady even beyond 10 6 s, which demonstrates its nonvolatility. The current-voltage (<inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula>) characteristics were fit to evaluate its transport properties and a band diagram was projected to have a better insight of the device operational principles. To validate the experimental observations, a new model has been developed, and the simulated <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> behavior was analogous to the experimental one. Efforts were then devoted to observe long-term potentiation (LTP) and long-term depression (LTD) utilizing identical but opposite pulses to evaluate the device's efficacy for synaptic applications. The synaptic behavior was well controlled by the pulse (pulse amplitude and width) variations. The conductance change was found to be symmetric and then saturated, which reflects the popular biological Hebbian rules. Finally, a long-term synaptic modulation has been implemented by establishing the spike rate dependent plasticity (SRDP) rule, which is a part of spiking neural networks and advantageous to mimic the brain's capability at low power. All the obtained experimental results were systematically corroborated by neural network simulation. Overall, our approach provides a new road map toward the development of TCO-based alternative memristors, which can be employed to mimic the synaptic plasticity for energy-efficient bioinspired neuromorphic systems and non-von Neumann computer architectures.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2999324</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological neural networks ; Biomimetics ; Computer simulation ; CuCrO ; Electrodes ; Fluorine ; Memristors ; Neural networks ; Neuromorphics ; Neurons ; Pulse amplitude ; Resistance ; resistive switching (RS) ; spike rate-dependent plasticity (SRDP) ; Spikes ; Switches ; Switching ; synapse ; Synapses ; Tin oxides ; Transport properties</subject><ispartof>IEEE transactions on electron devices, 2020-08, Vol.67 (8), p.3451-3458</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2895-4944 ; 0000-0001-5815-8765 ; 0000-0001-5932-1739 ; 0000-0003-2724-8762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9118968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boppidi, Pavan Kumar Reddy</creatorcontrib><creatorcontrib>Suresh, Bharathwaj</creatorcontrib><creatorcontrib>Zhussupbekova, Ainur</creatorcontrib><creatorcontrib>Biswas, Pranab</creatorcontrib><creatorcontrib>Mullarkey, Daragh</creatorcontrib><creatorcontrib>Raj, P. Michael Preetam</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><creatorcontrib>Kundu, Souvik</creatorcontrib><title>Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this article, we introduce a new class of p-type transparent conductive oxide (TCO) CuCrO 2 (150 nm) heterogeneously integrated onto fluorine doped tin oxide (FTO)/glass for forming-free memristor-based neuromorphic applications. The fabricated Al/CuCrO 2 /FTO memristors demonstrate a reliable bipolar resistive switching with an ON/ OFF ratio of 1000. The retention of the device was found to be steady even beyond 10 6 s, which demonstrates its nonvolatility. The current-voltage (<inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula>) characteristics were fit to evaluate its transport properties and a band diagram was projected to have a better insight of the device operational principles. To validate the experimental observations, a new model has been developed, and the simulated <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> behavior was analogous to the experimental one. Efforts were then devoted to observe long-term potentiation (LTP) and long-term depression (LTD) utilizing identical but opposite pulses to evaluate the device's efficacy for synaptic applications. The synaptic behavior was well controlled by the pulse (pulse amplitude and width) variations. The conductance change was found to be symmetric and then saturated, which reflects the popular biological Hebbian rules. Finally, a long-term synaptic modulation has been implemented by establishing the spike rate dependent plasticity (SRDP) rule, which is a part of spiking neural networks and advantageous to mimic the brain's capability at low power. All the obtained experimental results were systematically corroborated by neural network simulation. Overall, our approach provides a new road map toward the development of TCO-based alternative memristors, which can be employed to mimic the synaptic plasticity for energy-efficient bioinspired neuromorphic systems and non-von Neumann computer architectures.]]></description><subject>Biological neural networks</subject><subject>Biomimetics</subject><subject>Computer simulation</subject><subject>CuCrO</subject><subject>Electrodes</subject><subject>Fluorine</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Pulse amplitude</subject><subject>Resistance</subject><subject>resistive switching (RS)</subject><subject>spike rate-dependent plasticity (SRDP)</subject><subject>Spikes</subject><subject>Switches</subject><subject>Switching</subject><subject>synapse</subject><subject>Synapses</subject><subject>Tin oxides</subject><subject>Transport properties</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotz8tLw0AQBvBFFKzVu-BlwXPqvpLsHiWtD6hW2noOm2RitzYPdzeWXvzbXamH4WPgxzcMQteUTCgl6m49m04YYWTClFKciRM0onGcRioRySkaEUJlpLjk5-jCuW1YEyHYCP3M6tqUBlqPl-CM8-Yb8GpvfLkx7QfWbYVXvfkEvNQe8BR6aKs__LbTwZbGH7BpscavsMfZkNkFwy_Q2FDUWVyHCXBwpthBIIPtms72G1Pi1cF5aNwlOqv1zsHVf47R-8NsnT1F88Xjc3Y_jwxNYx8BlcCKKq4qqmsKIWQlSxA8PBseK4CIghIRyyqlguuESCK11jGIuE55WfAxuj329rb7GsD5fNsNtg0ncyZYmjAiRRrUzVEZAMh7axptD7miVKpE8l8mQGr2</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Boppidi, Pavan Kumar Reddy</creator><creator>Suresh, Bharathwaj</creator><creator>Zhussupbekova, Ainur</creator><creator>Biswas, Pranab</creator><creator>Mullarkey, Daragh</creator><creator>Raj, P. Michael Preetam</creator><creator>Shvets, Igor V.</creator><creator>Kundu, Souvik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2895-4944</orcidid><orcidid>https://orcid.org/0000-0001-5815-8765</orcidid><orcidid>https://orcid.org/0000-0001-5932-1739</orcidid><orcidid>https://orcid.org/0000-0003-2724-8762</orcidid></search><sort><creationdate>20200801</creationdate><title>Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems</title><author>Boppidi, Pavan Kumar Reddy ; Suresh, Bharathwaj ; Zhussupbekova, Ainur ; Biswas, Pranab ; Mullarkey, Daragh ; Raj, P. Michael Preetam ; Shvets, Igor V. ; Kundu, Souvik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e18e2bd5dd1af1edd18d8ce43299018be04b10458d7143a60808aaa5e45f73cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Biomimetics</topic><topic>Computer simulation</topic><topic>CuCrO</topic><topic>Electrodes</topic><topic>Fluorine</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Pulse amplitude</topic><topic>Resistance</topic><topic>resistive switching (RS)</topic><topic>spike rate-dependent plasticity (SRDP)</topic><topic>Spikes</topic><topic>Switches</topic><topic>Switching</topic><topic>synapse</topic><topic>Synapses</topic><topic>Tin oxides</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boppidi, Pavan Kumar Reddy</creatorcontrib><creatorcontrib>Suresh, Bharathwaj</creatorcontrib><creatorcontrib>Zhussupbekova, Ainur</creatorcontrib><creatorcontrib>Biswas, Pranab</creatorcontrib><creatorcontrib>Mullarkey, Daragh</creatorcontrib><creatorcontrib>Raj, P. Michael Preetam</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><creatorcontrib>Kundu, Souvik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boppidi, Pavan Kumar Reddy</au><au>Suresh, Bharathwaj</au><au>Zhussupbekova, Ainur</au><au>Biswas, Pranab</au><au>Mullarkey, Daragh</au><au>Raj, P. Michael Preetam</au><au>Shvets, Igor V.</au><au>Kundu, Souvik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>67</volume><issue>8</issue><spage>3451</spage><epage>3458</epage><pages>3451-3458</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this article, we introduce a new class of p-type transparent conductive oxide (TCO) CuCrO 2 (150 nm) heterogeneously integrated onto fluorine doped tin oxide (FTO)/glass for forming-free memristor-based neuromorphic applications. The fabricated Al/CuCrO 2 /FTO memristors demonstrate a reliable bipolar resistive switching with an ON/ OFF ratio of 1000. The retention of the device was found to be steady even beyond 10 6 s, which demonstrates its nonvolatility. The current-voltage (<inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula>) characteristics were fit to evaluate its transport properties and a band diagram was projected to have a better insight of the device operational principles. To validate the experimental observations, a new model has been developed, and the simulated <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> behavior was analogous to the experimental one. Efforts were then devoted to observe long-term potentiation (LTP) and long-term depression (LTD) utilizing identical but opposite pulses to evaluate the device's efficacy for synaptic applications. The synaptic behavior was well controlled by the pulse (pulse amplitude and width) variations. The conductance change was found to be symmetric and then saturated, which reflects the popular biological Hebbian rules. Finally, a long-term synaptic modulation has been implemented by establishing the spike rate dependent plasticity (SRDP) rule, which is a part of spiking neural networks and advantageous to mimic the brain's capability at low power. All the obtained experimental results were systematically corroborated by neural network simulation. Overall, our approach provides a new road map toward the development of TCO-based alternative memristors, which can be employed to mimic the synaptic plasticity for energy-efficient bioinspired neuromorphic systems and non-von Neumann computer architectures.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2999324</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2895-4944</orcidid><orcidid>https://orcid.org/0000-0001-5815-8765</orcidid><orcidid>https://orcid.org/0000-0001-5932-1739</orcidid><orcidid>https://orcid.org/0000-0003-2724-8762</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-08, Vol.67 (8), p.3451-3458
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2427620847
source IEEE Electronic Library (IEL)
subjects Biological neural networks
Biomimetics
Computer simulation
CuCrO
Electrodes
Fluorine
Memristors
Neural networks
Neuromorphics
Neurons
Pulse amplitude
Resistance
resistive switching (RS)
spike rate-dependent plasticity (SRDP)
Spikes
Switches
Switching
synapse
Synapses
Tin oxides
Transport properties
title Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Resistive%20Switching%20and%20Spike%20Rate%20Dependent%20Plasticity%20in%20a%20New%20CuCrO2%20Memristor%20for%20Plausible%20Neuromorphic%20Systems&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Boppidi,%20Pavan%20Kumar%20Reddy&rft.date=2020-08-01&rft.volume=67&rft.issue=8&rft.spage=3451&rft.epage=3458&rft.pages=3451-3458&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2999324&rft_dat=%3Cproquest_RIE%3E2427620847%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427620847&rft_id=info:pmid/&rft_ieee_id=9118968&rfr_iscdi=true