Neogene Retroarc Foreland Basin Evolution, Sediment Provenance, and Magmatism in Response to Flat Slab Subduction, Western Argentina

Understanding the effects of flat slab subduction on mountain building, arc magmatism, and basin evolution is fundamental to convergent‐margin tectonics, with implications for potential feedbacks among geodynamic, magmatic, and surface processes. New stratigraphic and geochronological constraints on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2020-07, Vol.39 (7), p.n/a
Hauptverfasser: Capaldi, Tomas N., Horton, Brian K., McKenzie, N. Ryan, Mackaman‐Lofland, Chelsea, Stockli, Daniel F., Ortiz, Gustavo, Alvarado, Patricia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the effects of flat slab subduction on mountain building, arc magmatism, and basin evolution is fundamental to convergent‐margin tectonics, with implications for potential feedbacks among geodynamic, magmatic, and surface processes. New stratigraphic and geochronological constraints on Cenozoic sedimentation and magmatism in the southern Central Andes of Argentina (31°S) reveal shifts in volcanism, foreland/hinterland basin development, sediment accumulation, and provenance as the retroarc region was structurally partitioned during slab flattening. Detrital zircon U‐Pb age distributions from the western (Calingasta basin), central (Talacasto and Albarracín basins), and eastern (Bermejo foreland basin) segments of the retroarc basin system preserve syndepositional volcanism and orogenic unroofing of multiple tectonic provinces. Initial shortening‐related exhumation of the Principal Cordillera at 24–17 Ma was recorded by the accumulation of distal eolian deposits bearing Oligocene–Eocene zircons from the Andean magmatic arc. The Calingasta basin chronicled volcanism and basement shortening in the Frontal Cordillera at ~17–11 Ma, as marked by an upward coarsening succession of fluvial to alluvial fan deposits with a sustained zircon U‐Pb age component that matches pervasive Permian‐Triassic bedrock in the hinterland. An ~450 km eastward inboard sweep of volcanism at 11 Ma coincided with the inception of flat slab subduction, and subsequent thin‐skinned shortening in the Precordillera fold‐thrust belt that exhumed wedge‐top deposits and induced cratonward (eastward) advance of flexural subsidence into the Bermejo foreland basin. This foreland basin was structurally partitioned as basement uplifts of the Sierras Pampeanas transformed a fluvial megafan sediment routing network into smaller isolated alluvial fan systems fed by adjacent basement blocks. Key Points Andean retroarc basin was structurally partitioned into isolated hinterland and broken foreland basins during subduction shallowing Clastic progradational deposystems and orogenic unroofing signatures are associated with sequential Andean deformation Flat slab subduction drove the advance of the Andean magmatic front >450 km eastward into the foreland at 10 Ma
ISSN:0278-7407
1944-9194
DOI:10.1029/2019TC005958