Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG

Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2020-09, Vol.76 (9), p.6533-6544
Hauptverfasser: Devi, R. Lakshmi, Kalaivani, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6544
container_issue 9
container_start_page 6533
container_title The Journal of supercomputing
container_volume 76
creator Devi, R. Lakshmi
Kalaivani, V.
description Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.
doi_str_mv 10.1007/s11227-019-02873-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427543423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427543423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOF5ewFXApVRznbZLKToKihtdhzQ9mckwk4xJi_TtzVjRnbjKCfzfuXwIXVByTQkpbxKljJUFoXVBWFXyYjxAMypzQUQlDtGM1IwUlRTsGJ2ktCaECF7yGXLP2qycB7wBHb3zS6x9hx_Da9HqBB02OnZOG6xjXI39aus0zv-lD8klPKQ9kHrdu9Q7ozdfcDd6vXUGW9D9ECHhYPFdszhDR1ZvEpx_v6fo7f7utXkonl4Wj83tU2E4rfuiI8AoEbWxXFJjK9rx1kggUEtr5VzKdl7OeVWLtq0YBS5Eaa3o5iXIfCoV_BRdTn13MbwPkHq1DkP0eaRigpVScMF4TrEpZWJIKYJVu-i2Oo6KErVXqialKitVX0rVmKGrCfqANthkHHgDP2B2KmUeIGWuCM3p6v_pxu0tBt-EwfcZ5ROactwvIf7e8Md6n0nCmqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427543423</pqid></control><display><type>article</type><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Devi, R. Lakshmi ; Kalaivani, V.</creator><creatorcontrib>Devi, R. Lakshmi ; Kalaivani, V.</creatorcontrib><description>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-019-02873-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrhythmia ; Cardiac arrhythmia ; Cardiovascular disease ; Compilers ; Computer Science ; Computer Science, Hardware &amp; Architecture ; Computer Science, Theory &amp; Methods ; Cost analysis ; Diagnosis ; Echocardiography ; Engineering ; Engineering, Electrical &amp; Electronic ; Heart diseases ; Heart rate ; Internet of Things ; Interpreters ; Machine learning ; Modernization ; Processor Architectures ; Programming Languages ; Remote monitoring ; Science &amp; Technology ; Signal processing ; Technology ; Telemedicine ; Telemetry</subject><ispartof>The Journal of supercomputing, 2020-09, Vol.76 (9), p.6533-6544</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000552755500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</citedby><cites>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</cites><orcidid>0000-0002-3338-5344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-019-02873-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-019-02873-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Devi, R. Lakshmi</creatorcontrib><creatorcontrib>Kalaivani, V.</creatorcontrib><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><addtitle>J SUPERCOMPUT</addtitle><description>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Cardiac arrhythmia</subject><subject>Cardiovascular disease</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Cost analysis</subject><subject>Diagnosis</subject><subject>Echocardiography</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Internet of Things</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Modernization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Remote monitoring</subject><subject>Science &amp; Technology</subject><subject>Signal processing</subject><subject>Technology</subject><subject>Telemedicine</subject><subject>Telemetry</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhoMoOF5ewFXApVRznbZLKToKihtdhzQ9mckwk4xJi_TtzVjRnbjKCfzfuXwIXVByTQkpbxKljJUFoXVBWFXyYjxAMypzQUQlDtGM1IwUlRTsGJ2ktCaECF7yGXLP2qycB7wBHb3zS6x9hx_Da9HqBB02OnZOG6xjXI39aus0zv-lD8klPKQ9kHrdu9Q7ozdfcDd6vXUGW9D9ECHhYPFdszhDR1ZvEpx_v6fo7f7utXkonl4Wj83tU2E4rfuiI8AoEbWxXFJjK9rx1kggUEtr5VzKdl7OeVWLtq0YBS5Eaa3o5iXIfCoV_BRdTn13MbwPkHq1DkP0eaRigpVScMF4TrEpZWJIKYJVu-i2Oo6KErVXqialKitVX0rVmKGrCfqANthkHHgDP2B2KmUeIGWuCM3p6v_pxu0tBt-EwfcZ5ROactwvIf7e8Md6n0nCmqE</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Devi, R. Lakshmi</creator><creator>Kalaivani, V.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3338-5344</orcidid></search><sort><creationdate>20200901</creationdate><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><author>Devi, R. Lakshmi ; Kalaivani, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Cardiac arrhythmia</topic><topic>Cardiovascular disease</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Cost analysis</topic><topic>Diagnosis</topic><topic>Echocardiography</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Internet of Things</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Modernization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Remote monitoring</topic><topic>Science &amp; Technology</topic><topic>Signal processing</topic><topic>Technology</topic><topic>Telemedicine</topic><topic>Telemetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, R. Lakshmi</creatorcontrib><creatorcontrib>Kalaivani, V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, R. Lakshmi</au><au>Kalaivani, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><stitle>J SUPERCOMPUT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>76</volume><issue>9</issue><spage>6533</spage><epage>6544</epage><pages>6533-6544</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-019-02873-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3338-5344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2020-09, Vol.76 (9), p.6533-6544
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2427543423
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Arrhythmia
Cardiac arrhythmia
Cardiovascular disease
Compilers
Computer Science
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Cost analysis
Diagnosis
Echocardiography
Engineering
Engineering, Electrical & Electronic
Heart diseases
Heart rate
Internet of Things
Interpreters
Machine learning
Modernization
Processor Architectures
Programming Languages
Remote monitoring
Science & Technology
Signal processing
Technology
Telemedicine
Telemetry
title Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20IoT-based%20cardiac%20arrhythmia%20diagnosis%20using%20statistical%20and%20dynamic%20features%20of%20ECG&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Devi,%20R.%20Lakshmi&rft.date=2020-09-01&rft.volume=76&rft.issue=9&rft.spage=6533&rft.epage=6544&rft.pages=6533-6544&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-019-02873-y&rft_dat=%3Cproquest_cross%3E2427543423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427543423&rft_id=info:pmid/&rfr_iscdi=true