Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2020-09, Vol.76 (9), p.6533-6544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6544 |
---|---|
container_issue | 9 |
container_start_page | 6533 |
container_title | The Journal of supercomputing |
container_volume | 76 |
creator | Devi, R. Lakshmi Kalaivani, V. |
description | Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately. |
doi_str_mv | 10.1007/s11227-019-02873-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427543423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427543423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOF5ewFXApVRznbZLKToKihtdhzQ9mckwk4xJi_TtzVjRnbjKCfzfuXwIXVByTQkpbxKljJUFoXVBWFXyYjxAMypzQUQlDtGM1IwUlRTsGJ2ktCaECF7yGXLP2qycB7wBHb3zS6x9hx_Da9HqBB02OnZOG6xjXI39aus0zv-lD8klPKQ9kHrdu9Q7ozdfcDd6vXUGW9D9ECHhYPFdszhDR1ZvEpx_v6fo7f7utXkonl4Wj83tU2E4rfuiI8AoEbWxXFJjK9rx1kggUEtr5VzKdl7OeVWLtq0YBS5Eaa3o5iXIfCoV_BRdTn13MbwPkHq1DkP0eaRigpVScMF4TrEpZWJIKYJVu-i2Oo6KErVXqialKitVX0rVmKGrCfqANthkHHgDP2B2KmUeIGWuCM3p6v_pxu0tBt-EwfcZ5ROactwvIf7e8Md6n0nCmqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427543423</pqid></control><display><type>article</type><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Devi, R. Lakshmi ; Kalaivani, V.</creator><creatorcontrib>Devi, R. Lakshmi ; Kalaivani, V.</creatorcontrib><description>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-019-02873-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrhythmia ; Cardiac arrhythmia ; Cardiovascular disease ; Compilers ; Computer Science ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Cost analysis ; Diagnosis ; Echocardiography ; Engineering ; Engineering, Electrical & Electronic ; Heart diseases ; Heart rate ; Internet of Things ; Interpreters ; Machine learning ; Modernization ; Processor Architectures ; Programming Languages ; Remote monitoring ; Science & Technology ; Signal processing ; Technology ; Telemedicine ; Telemetry</subject><ispartof>The Journal of supercomputing, 2020-09, Vol.76 (9), p.6533-6544</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000552755500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</citedby><cites>FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</cites><orcidid>0000-0002-3338-5344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-019-02873-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-019-02873-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Devi, R. Lakshmi</creatorcontrib><creatorcontrib>Kalaivani, V.</creatorcontrib><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><addtitle>J SUPERCOMPUT</addtitle><description>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Cardiac arrhythmia</subject><subject>Cardiovascular disease</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer Science, Hardware & Architecture</subject><subject>Computer Science, Theory & Methods</subject><subject>Cost analysis</subject><subject>Diagnosis</subject><subject>Echocardiography</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Internet of Things</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Modernization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Remote monitoring</subject><subject>Science & Technology</subject><subject>Signal processing</subject><subject>Technology</subject><subject>Telemedicine</subject><subject>Telemetry</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKxDAUhoMoOF5ewFXApVRznbZLKToKihtdhzQ9mckwk4xJi_TtzVjRnbjKCfzfuXwIXVByTQkpbxKljJUFoXVBWFXyYjxAMypzQUQlDtGM1IwUlRTsGJ2ktCaECF7yGXLP2qycB7wBHb3zS6x9hx_Da9HqBB02OnZOG6xjXI39aus0zv-lD8klPKQ9kHrdu9Q7ozdfcDd6vXUGW9D9ECHhYPFdszhDR1ZvEpx_v6fo7f7utXkonl4Wj83tU2E4rfuiI8AoEbWxXFJjK9rx1kggUEtr5VzKdl7OeVWLtq0YBS5Eaa3o5iXIfCoV_BRdTn13MbwPkHq1DkP0eaRigpVScMF4TrEpZWJIKYJVu-i2Oo6KErVXqialKitVX0rVmKGrCfqANthkHHgDP2B2KmUeIGWuCM3p6v_pxu0tBt-EwfcZ5ROactwvIf7e8Md6n0nCmqE</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Devi, R. Lakshmi</creator><creator>Kalaivani, V.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3338-5344</orcidid></search><sort><creationdate>20200901</creationdate><title>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</title><author>Devi, R. Lakshmi ; Kalaivani, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d0e21049cf351cf81d3bc5e0e95ff5655b6763894bb821e3447ff4d67e5048143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Cardiac arrhythmia</topic><topic>Cardiovascular disease</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer Science, Hardware & Architecture</topic><topic>Computer Science, Theory & Methods</topic><topic>Cost analysis</topic><topic>Diagnosis</topic><topic>Echocardiography</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Internet of Things</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Modernization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Remote monitoring</topic><topic>Science & Technology</topic><topic>Signal processing</topic><topic>Technology</topic><topic>Telemedicine</topic><topic>Telemetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, R. Lakshmi</creatorcontrib><creatorcontrib>Kalaivani, V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, R. Lakshmi</au><au>Kalaivani, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><stitle>J SUPERCOMPUT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>76</volume><issue>9</issue><spage>6533</spage><epage>6544</epage><pages>6533-6544</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Cardiac arrhythmia is a life-threatening disease which causes severe health problems in patients. A timely diagnosis of arrhythmia diseases will be useful to save the lives. Internet of Things (IoT) assures to modernize the health-care sector through continuous, remote and noninvasive monitoring of cardiac arrhythmia diseases. An IoT platform for prediction of cardiovascular disease using an IoT-enabled ECG telemetry system acquires the ECG signal, processes the ECG signal and alerts physician for an emergency. It is helpful for the physician to analyze the heart disease as early and accurate. We are developing an IoT-enabled ECG monitoring system to analyze the ECG signal. The statistical features of raw ECG signal are calculated. The ECG signal is analyzed using Pan Tompkins QRS detection algorithm for obtaining the dynamic features of the ECG signal. The system is used to find the RR intervals from ECG signal to capture heart rate variability features. The statistical and dynamic features are then applied to the classification process to classify the cardiac arrhythmia disease. People can check their cardiac condition by the acquisition of ECG signal even in their home. The size of the system is small, and it requires less maintenance and operational cost. It is helpful for the physician to analyze the heart disease as easily and accurately.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-019-02873-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3338-5344</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2020-09, Vol.76 (9), p.6533-6544 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2427543423 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Arrhythmia Cardiac arrhythmia Cardiovascular disease Compilers Computer Science Computer Science, Hardware & Architecture Computer Science, Theory & Methods Cost analysis Diagnosis Echocardiography Engineering Engineering, Electrical & Electronic Heart diseases Heart rate Internet of Things Interpreters Machine learning Modernization Processor Architectures Programming Languages Remote monitoring Science & Technology Signal processing Technology Telemedicine Telemetry |
title | Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20IoT-based%20cardiac%20arrhythmia%20diagnosis%20using%20statistical%20and%20dynamic%20features%20of%20ECG&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Devi,%20R.%20Lakshmi&rft.date=2020-09-01&rft.volume=76&rft.issue=9&rft.spage=6533&rft.epage=6544&rft.pages=6533-6544&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-019-02873-y&rft_dat=%3Cproquest_cross%3E2427543423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427543423&rft_id=info:pmid/&rfr_iscdi=true |