Microbial Component Detection in Enceladus Snowing Phenomenon

Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical bulletin 2020-04, Vol.75 (2), p.166-175
Hauptverfasser: Kotlarz, J., Zielenkiewicz, U., Zalewska, N. E., Kubiak, K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 166
container_title Astrophysical bulletin
container_volume 75
creator Kotlarz, J.
Zielenkiewicz, U.
Zalewska, N. E.
Kubiak, K. A.
description Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of physical and chemical conditions between Enceladus ocean bottom and the carbonate mineral matrix of actively venting chimneys of the Lost City Hydrothermal Field give an opportunity to create a mathematical model of microbial ascent process through the ice shell. In this study we present first results of particle in-cell kinetic simulations of microbial distance through 10 km deep ocean. We have obtained results for microbial component— Methanosarcinales sp. analogue—characterized by 6.6 pg mass and 2.0 μm diameter distribution in Enceladus plumes. We have assumed 0.1 W m −2 heating process, 5 km ice shell and cells concentration near ocean bottom 10 5 cells/mL. We have confirmed assumption of Porco research team about cells concentration near ocean surface about 10 4 cells/mL and vertical density diversity in plumes. We have found that the optimal altitude for microbial component detection is less than 1.0 km and that in-situ measurements done previously by Cassini mass spectrometer and proposed for Enceladus Orbiter mission 50 km altitude would be ineffective.
doi_str_mv 10.1134/S199034132002008X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427542589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427542589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fe9e8c30b4ae830cabae8f92f09fdf98a03400cd3443f4ef64c0bd8cb2efb3393</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgrX6AtwXPq5NMum4OHqS2KlQUquBtyWYndUub1GSL-PdmqehBhBlmGN5782YYO-VwzjnKizlXClByFAApytc9NuhHOUrB9396jofsKMYlQMFR4YBdPbQm-LrVq2zs1xvvyHXZDXVkuta7rHXZxBla6WYbs7nzH61bZE9v5Pw6pTtmB1avIp181yF7mU6ex3f57PH2fnw9yw3yosstKSoNQi01lQhG16laJSwo21hV6uQcwDQoJVpJtpAG6qY0tSBbY_I5ZGc73U3w71uKXbX02-DSykpIcTmSYlT2KL5DpYtiDGSrTWjXOnxWHKr-S9WfLyWO2HFiwroFhV_l_0lfGJJppQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427542589</pqid></control><display><type>article</type><title>Microbial Component Detection in Enceladus Snowing Phenomenon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kotlarz, J. ; Zielenkiewicz, U. ; Zalewska, N. E. ; Kubiak, K. A.</creator><creatorcontrib>Kotlarz, J. ; Zielenkiewicz, U. ; Zalewska, N. E. ; Kubiak, K. A.</creatorcontrib><description>Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of physical and chemical conditions between Enceladus ocean bottom and the carbonate mineral matrix of actively venting chimneys of the Lost City Hydrothermal Field give an opportunity to create a mathematical model of microbial ascent process through the ice shell. In this study we present first results of particle in-cell kinetic simulations of microbial distance through 10 km deep ocean. We have obtained results for microbial component— Methanosarcinales sp. analogue—characterized by 6.6 pg mass and 2.0 μm diameter distribution in Enceladus plumes. We have assumed 0.1 W m −2 heating process, 5 km ice shell and cells concentration near ocean bottom 10 5 cells/mL. We have confirmed assumption of Porco research team about cells concentration near ocean surface about 10 4 cells/mL and vertical density diversity in plumes. We have found that the optimal altitude for microbial component detection is less than 1.0 km and that in-situ measurements done previously by Cassini mass spectrometer and proposed for Enceladus Orbiter mission 50 km altitude would be ineffective.</description><identifier>ISSN: 1990-3413</identifier><identifier>EISSN: 1990-3421</identifier><identifier>DOI: 10.1134/S199034132002008X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Altitude ; Ascent ; Astronomy ; Astrophysics and Cosmology ; Carbon dioxide ; Chimneys ; Computer simulation ; Diameters ; Enceladus ; Ice cover ; Mathematical analysis ; Matrix methods ; Microorganisms ; Ocean bottom ; Ocean surface ; Physics ; Physics and Astronomy ; Plumes ; South Pole ; Water ; Water vapor</subject><ispartof>Astrophysical bulletin, 2020-04, Vol.75 (2), p.166-175</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fe9e8c30b4ae830cabae8f92f09fdf98a03400cd3443f4ef64c0bd8cb2efb3393</citedby><cites>FETCH-LOGICAL-c316t-fe9e8c30b4ae830cabae8f92f09fdf98a03400cd3443f4ef64c0bd8cb2efb3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S199034132002008X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S199034132002008X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kotlarz, J.</creatorcontrib><creatorcontrib>Zielenkiewicz, U.</creatorcontrib><creatorcontrib>Zalewska, N. E.</creatorcontrib><creatorcontrib>Kubiak, K. A.</creatorcontrib><title>Microbial Component Detection in Enceladus Snowing Phenomenon</title><title>Astrophysical bulletin</title><addtitle>Astrophys. Bull</addtitle><description>Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of physical and chemical conditions between Enceladus ocean bottom and the carbonate mineral matrix of actively venting chimneys of the Lost City Hydrothermal Field give an opportunity to create a mathematical model of microbial ascent process through the ice shell. In this study we present first results of particle in-cell kinetic simulations of microbial distance through 10 km deep ocean. We have obtained results for microbial component— Methanosarcinales sp. analogue—characterized by 6.6 pg mass and 2.0 μm diameter distribution in Enceladus plumes. We have assumed 0.1 W m −2 heating process, 5 km ice shell and cells concentration near ocean bottom 10 5 cells/mL. We have confirmed assumption of Porco research team about cells concentration near ocean surface about 10 4 cells/mL and vertical density diversity in plumes. We have found that the optimal altitude for microbial component detection is less than 1.0 km and that in-situ measurements done previously by Cassini mass spectrometer and proposed for Enceladus Orbiter mission 50 km altitude would be ineffective.</description><subject>Altitude</subject><subject>Ascent</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Carbon dioxide</subject><subject>Chimneys</subject><subject>Computer simulation</subject><subject>Diameters</subject><subject>Enceladus</subject><subject>Ice cover</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Microorganisms</subject><subject>Ocean bottom</subject><subject>Ocean surface</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plumes</subject><subject>South Pole</subject><subject>Water</subject><subject>Water vapor</subject><issn>1990-3413</issn><issn>1990-3421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEQDaJgrX6AtwXPq5NMum4OHqS2KlQUquBtyWYndUub1GSL-PdmqehBhBlmGN5782YYO-VwzjnKizlXClByFAApytc9NuhHOUrB9396jofsKMYlQMFR4YBdPbQm-LrVq2zs1xvvyHXZDXVkuta7rHXZxBla6WYbs7nzH61bZE9v5Pw6pTtmB1avIp181yF7mU6ex3f57PH2fnw9yw3yosstKSoNQi01lQhG16laJSwo21hV6uQcwDQoJVpJtpAG6qY0tSBbY_I5ZGc73U3w71uKXbX02-DSykpIcTmSYlT2KL5DpYtiDGSrTWjXOnxWHKr-S9WfLyWO2HFiwroFhV_l_0lfGJJppQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kotlarz, J.</creator><creator>Zielenkiewicz, U.</creator><creator>Zalewska, N. E.</creator><creator>Kubiak, K. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200401</creationdate><title>Microbial Component Detection in Enceladus Snowing Phenomenon</title><author>Kotlarz, J. ; Zielenkiewicz, U. ; Zalewska, N. E. ; Kubiak, K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fe9e8c30b4ae830cabae8f92f09fdf98a03400cd3443f4ef64c0bd8cb2efb3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude</topic><topic>Ascent</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Carbon dioxide</topic><topic>Chimneys</topic><topic>Computer simulation</topic><topic>Diameters</topic><topic>Enceladus</topic><topic>Ice cover</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Microorganisms</topic><topic>Ocean bottom</topic><topic>Ocean surface</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plumes</topic><topic>South Pole</topic><topic>Water</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarz, J.</creatorcontrib><creatorcontrib>Zielenkiewicz, U.</creatorcontrib><creatorcontrib>Zalewska, N. E.</creatorcontrib><creatorcontrib>Kubiak, K. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarz, J.</au><au>Zielenkiewicz, U.</au><au>Zalewska, N. E.</au><au>Kubiak, K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Component Detection in Enceladus Snowing Phenomenon</atitle><jtitle>Astrophysical bulletin</jtitle><stitle>Astrophys. Bull</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>75</volume><issue>2</issue><spage>166</spage><epage>175</epage><pages>166-175</pages><issn>1990-3413</issn><eissn>1990-3421</eissn><abstract>Enceladus is an attractive place to look for signs of life thanks to liquid water and the availability of energy. Recent research has proven that the ejected material of Enceladus south pole consists of water vapor, water ice, carbon dioxide, methane and molecular hydrogen. Possible similarities of physical and chemical conditions between Enceladus ocean bottom and the carbonate mineral matrix of actively venting chimneys of the Lost City Hydrothermal Field give an opportunity to create a mathematical model of microbial ascent process through the ice shell. In this study we present first results of particle in-cell kinetic simulations of microbial distance through 10 km deep ocean. We have obtained results for microbial component— Methanosarcinales sp. analogue—characterized by 6.6 pg mass and 2.0 μm diameter distribution in Enceladus plumes. We have assumed 0.1 W m −2 heating process, 5 km ice shell and cells concentration near ocean bottom 10 5 cells/mL. We have confirmed assumption of Porco research team about cells concentration near ocean surface about 10 4 cells/mL and vertical density diversity in plumes. We have found that the optimal altitude for microbial component detection is less than 1.0 km and that in-situ measurements done previously by Cassini mass spectrometer and proposed for Enceladus Orbiter mission 50 km altitude would be ineffective.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199034132002008X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-3413
ispartof Astrophysical bulletin, 2020-04, Vol.75 (2), p.166-175
issn 1990-3413
1990-3421
language eng
recordid cdi_proquest_journals_2427542589
source SpringerLink Journals - AutoHoldings
subjects Altitude
Ascent
Astronomy
Astrophysics and Cosmology
Carbon dioxide
Chimneys
Computer simulation
Diameters
Enceladus
Ice cover
Mathematical analysis
Matrix methods
Microorganisms
Ocean bottom
Ocean surface
Physics
Physics and Astronomy
Plumes
South Pole
Water
Water vapor
title Microbial Component Detection in Enceladus Snowing Phenomenon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Component%20Detection%20in%20Enceladus%20Snowing%20Phenomenon&rft.jtitle=Astrophysical%20bulletin&rft.au=Kotlarz,%20J.&rft.date=2020-04-01&rft.volume=75&rft.issue=2&rft.spage=166&rft.epage=175&rft.pages=166-175&rft.issn=1990-3413&rft.eissn=1990-3421&rft_id=info:doi/10.1134/S199034132002008X&rft_dat=%3Cproquest_cross%3E2427542589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427542589&rft_id=info:pmid/&rfr_iscdi=true