Segmenting market structure from multi-channel clickstream data: a novel generative model

Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic commerce research 2020-09, Vol.20 (3), p.509-533
Hauptverfasser: Qian, Yang, Jiang, Yuanchun, Du, Yanan, Sun, Jianshan, Liu, Yezheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 3
container_start_page 509
container_title Electronic commerce research
container_volume 20
creator Qian, Yang
Jiang, Yuanchun
Du, Yanan
Sun, Jianshan
Liu, Yezheng
description Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.
doi_str_mv 10.1007/s10660-019-09393-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2427540518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718378139</galeid><sourcerecordid>A718378139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</originalsourceid><addsrcrecordid>eNp9kEFvFSEUhSdGE-uzf6ArEtfUCwwM465ptJo06UJddEV4cBlpZ5gKTBP_fdFp0p1hAeF-50C-rjtjcM4Aho-FgVJAgY0URjEKCq-6EyYHTkeh-Ot2FnqkcpDibfeulDsADgPvT7rb7zgtmGpME1lsvsdKSs2bq1tGEvK6kGWba6Tul00JZ-Lm6O4bgXYh3lb7iViS1sc2mTBhtjU-IllWj_P77k2wc8HT5_3Q_fzy-cflV3p9c_Xt8uKaup7JSrXmvWUqHAN65zx4JcbeaRkUjj74IIRUHAB18JqhsNZJOAop-qPS1jsrDt2Hvfchr783LNXcrVtO7UnDez7IHiTTjTrfqcnOaGIKa83WteVxiW5NGGK7vxgaOmjWDB46vgdcXkvJGMxDjs3QH8PA_HVuduemOTf_nBtoIbKHsFXG8hIZhFCac6EaInaktGGaML989z_FTyIPkAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427540518</pqid></control><display><type>article</type><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</creator><creatorcontrib>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</creatorcontrib><description>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</description><identifier>ISSN: 1389-5753</identifier><identifier>EISSN: 1572-9362</identifier><identifier>DOI: 10.1007/s10660-019-09393-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automobile industry ; Business and Management ; Competition ; Computational linguistics ; Computer Communication Networks ; Data Structures and Information Theory ; e-Commerce/e-business ; IT in Business ; Language processing ; Marketing research ; Markets ; Natural language interfaces ; Operations Research/Decision Theory ; Strategic management</subject><ispartof>Electronic commerce research, 2020-09, Vol.20 (3), p.509-533</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</citedby><cites>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</cites><orcidid>0000-0003-0886-3647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10660-019-09393-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10660-019-09393-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Jiang, Yuanchun</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><creatorcontrib>Sun, Jianshan</creatorcontrib><creatorcontrib>Liu, Yezheng</creatorcontrib><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><title>Electronic commerce research</title><addtitle>Electron Commer Res</addtitle><description>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</description><subject>Automobile industry</subject><subject>Business and Management</subject><subject>Competition</subject><subject>Computational linguistics</subject><subject>Computer Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>e-Commerce/e-business</subject><subject>IT in Business</subject><subject>Language processing</subject><subject>Marketing research</subject><subject>Markets</subject><subject>Natural language interfaces</subject><subject>Operations Research/Decision Theory</subject><subject>Strategic management</subject><issn>1389-5753</issn><issn>1572-9362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFvFSEUhSdGE-uzf6ArEtfUCwwM465ptJo06UJddEV4cBlpZ5gKTBP_fdFp0p1hAeF-50C-rjtjcM4Aho-FgVJAgY0URjEKCq-6EyYHTkeh-Ot2FnqkcpDibfeulDsADgPvT7rb7zgtmGpME1lsvsdKSs2bq1tGEvK6kGWba6Tul00JZ-Lm6O4bgXYh3lb7iViS1sc2mTBhtjU-IllWj_P77k2wc8HT5_3Q_fzy-cflV3p9c_Xt8uKaup7JSrXmvWUqHAN65zx4JcbeaRkUjj74IIRUHAB18JqhsNZJOAop-qPS1jsrDt2Hvfchr783LNXcrVtO7UnDez7IHiTTjTrfqcnOaGIKa83WteVxiW5NGGK7vxgaOmjWDB46vgdcXkvJGMxDjs3QH8PA_HVuduemOTf_nBtoIbKHsFXG8hIZhFCac6EaInaktGGaML989z_FTyIPkAw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Qian, Yang</creator><creator>Jiang, Yuanchun</creator><creator>Du, Yanan</creator><creator>Sun, Jianshan</creator><creator>Liu, Yezheng</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0886-3647</orcidid></search><sort><creationdate>20200901</creationdate><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><author>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobile industry</topic><topic>Business and Management</topic><topic>Competition</topic><topic>Computational linguistics</topic><topic>Computer Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>e-Commerce/e-business</topic><topic>IT in Business</topic><topic>Language processing</topic><topic>Marketing research</topic><topic>Markets</topic><topic>Natural language interfaces</topic><topic>Operations Research/Decision Theory</topic><topic>Strategic management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Jiang, Yuanchun</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><creatorcontrib>Sun, Jianshan</creatorcontrib><creatorcontrib>Liu, Yezheng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Electronic commerce research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Yang</au><au>Jiang, Yuanchun</au><au>Du, Yanan</au><au>Sun, Jianshan</au><au>Liu, Yezheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmenting market structure from multi-channel clickstream data: a novel generative model</atitle><jtitle>Electronic commerce research</jtitle><stitle>Electron Commer Res</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>509</spage><epage>533</epage><pages>509-533</pages><issn>1389-5753</issn><eissn>1572-9362</eissn><abstract>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10660-019-09393-0</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0886-3647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-5753
ispartof Electronic commerce research, 2020-09, Vol.20 (3), p.509-533
issn 1389-5753
1572-9362
language eng
recordid cdi_proquest_journals_2427540518
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Automobile industry
Business and Management
Competition
Computational linguistics
Computer Communication Networks
Data Structures and Information Theory
e-Commerce/e-business
IT in Business
Language processing
Marketing research
Markets
Natural language interfaces
Operations Research/Decision Theory
Strategic management
title Segmenting market structure from multi-channel clickstream data: a novel generative model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmenting%20market%20structure%20from%20multi-channel%20clickstream%20data:%20a%20novel%20generative%20model&rft.jtitle=Electronic%20commerce%20research&rft.au=Qian,%20Yang&rft.date=2020-09-01&rft.volume=20&rft.issue=3&rft.spage=509&rft.epage=533&rft.pages=509-533&rft.issn=1389-5753&rft.eissn=1572-9362&rft_id=info:doi/10.1007/s10660-019-09393-0&rft_dat=%3Cgale_proqu%3EA718378139%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427540518&rft_id=info:pmid/&rft_galeid=A718378139&rfr_iscdi=true