Segmenting market structure from multi-channel clickstream data: a novel generative model
Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel...
Gespeichert in:
Veröffentlicht in: | Electronic commerce research 2020-09, Vol.20 (3), p.509-533 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | 3 |
container_start_page | 509 |
container_title | Electronic commerce research |
container_volume | 20 |
creator | Qian, Yang Jiang, Yuanchun Du, Yanan Sun, Jianshan Liu, Yezheng |
description | Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market. |
doi_str_mv | 10.1007/s10660-019-09393-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2427540518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718378139</galeid><sourcerecordid>A718378139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</originalsourceid><addsrcrecordid>eNp9kEFvFSEUhSdGE-uzf6ArEtfUCwwM465ptJo06UJddEV4cBlpZ5gKTBP_fdFp0p1hAeF-50C-rjtjcM4Aho-FgVJAgY0URjEKCq-6EyYHTkeh-Ot2FnqkcpDibfeulDsADgPvT7rb7zgtmGpME1lsvsdKSs2bq1tGEvK6kGWba6Tul00JZ-Lm6O4bgXYh3lb7iViS1sc2mTBhtjU-IllWj_P77k2wc8HT5_3Q_fzy-cflV3p9c_Xt8uKaup7JSrXmvWUqHAN65zx4JcbeaRkUjj74IIRUHAB18JqhsNZJOAop-qPS1jsrDt2Hvfchr783LNXcrVtO7UnDez7IHiTTjTrfqcnOaGIKa83WteVxiW5NGGK7vxgaOmjWDB46vgdcXkvJGMxDjs3QH8PA_HVuduemOTf_nBtoIbKHsFXG8hIZhFCac6EaInaktGGaML989z_FTyIPkAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427540518</pqid></control><display><type>article</type><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</creator><creatorcontrib>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</creatorcontrib><description>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</description><identifier>ISSN: 1389-5753</identifier><identifier>EISSN: 1572-9362</identifier><identifier>DOI: 10.1007/s10660-019-09393-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automobile industry ; Business and Management ; Competition ; Computational linguistics ; Computer Communication Networks ; Data Structures and Information Theory ; e-Commerce/e-business ; IT in Business ; Language processing ; Marketing research ; Markets ; Natural language interfaces ; Operations Research/Decision Theory ; Strategic management</subject><ispartof>Electronic commerce research, 2020-09, Vol.20 (3), p.509-533</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</citedby><cites>FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</cites><orcidid>0000-0003-0886-3647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10660-019-09393-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10660-019-09393-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Jiang, Yuanchun</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><creatorcontrib>Sun, Jianshan</creatorcontrib><creatorcontrib>Liu, Yezheng</creatorcontrib><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><title>Electronic commerce research</title><addtitle>Electron Commer Res</addtitle><description>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</description><subject>Automobile industry</subject><subject>Business and Management</subject><subject>Competition</subject><subject>Computational linguistics</subject><subject>Computer Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>e-Commerce/e-business</subject><subject>IT in Business</subject><subject>Language processing</subject><subject>Marketing research</subject><subject>Markets</subject><subject>Natural language interfaces</subject><subject>Operations Research/Decision Theory</subject><subject>Strategic management</subject><issn>1389-5753</issn><issn>1572-9362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFvFSEUhSdGE-uzf6ArEtfUCwwM465ptJo06UJddEV4cBlpZ5gKTBP_fdFp0p1hAeF-50C-rjtjcM4Aho-FgVJAgY0URjEKCq-6EyYHTkeh-Ot2FnqkcpDibfeulDsADgPvT7rb7zgtmGpME1lsvsdKSs2bq1tGEvK6kGWba6Tul00JZ-Lm6O4bgXYh3lb7iViS1sc2mTBhtjU-IllWj_P77k2wc8HT5_3Q_fzy-cflV3p9c_Xt8uKaup7JSrXmvWUqHAN65zx4JcbeaRkUjj74IIRUHAB18JqhsNZJOAop-qPS1jsrDt2Hvfchr783LNXcrVtO7UnDez7IHiTTjTrfqcnOaGIKa83WteVxiW5NGGK7vxgaOmjWDB46vgdcXkvJGMxDjs3QH8PA_HVuduemOTf_nBtoIbKHsFXG8hIZhFCac6EaInaktGGaML989z_FTyIPkAw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Qian, Yang</creator><creator>Jiang, Yuanchun</creator><creator>Du, Yanan</creator><creator>Sun, Jianshan</creator><creator>Liu, Yezheng</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0886-3647</orcidid></search><sort><creationdate>20200901</creationdate><title>Segmenting market structure from multi-channel clickstream data: a novel generative model</title><author>Qian, Yang ; Jiang, Yuanchun ; Du, Yanan ; Sun, Jianshan ; Liu, Yezheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8824a16fbfedccd0d6394c85f6e9dfdf3356200e8fd81e3aac50b3534b68adca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobile industry</topic><topic>Business and Management</topic><topic>Competition</topic><topic>Computational linguistics</topic><topic>Computer Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>e-Commerce/e-business</topic><topic>IT in Business</topic><topic>Language processing</topic><topic>Marketing research</topic><topic>Markets</topic><topic>Natural language interfaces</topic><topic>Operations Research/Decision Theory</topic><topic>Strategic management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Yang</creatorcontrib><creatorcontrib>Jiang, Yuanchun</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><creatorcontrib>Sun, Jianshan</creatorcontrib><creatorcontrib>Liu, Yezheng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Electronic commerce research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Yang</au><au>Jiang, Yuanchun</au><au>Du, Yanan</au><au>Sun, Jianshan</au><au>Liu, Yezheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmenting market structure from multi-channel clickstream data: a novel generative model</atitle><jtitle>Electronic commerce research</jtitle><stitle>Electron Commer Res</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>509</spage><epage>533</epage><pages>509-533</pages><issn>1389-5753</issn><eissn>1572-9362</eissn><abstract>Competitive analysis has long been recognized as the cornerstones of firm’s strategic management and business activities. With the advent of the multi-channel clickstream, this paper studies the competitive market structure by developing a novel generative model. We first aggregate the multi-channel clickstream data to construct a consideration set for each user. Then, a novel sparse influence topic model (SITM) is proposed to segment an overall market into submarkets by leveraging the consideration sets at the individual level. Compared with the current generative models, the proposed SITM model considers the limited interest and the influence of products to generate users’ choice behaviors. Based on the multi-channel clickstream data from 109,081 users on 3779 cars, we empirically analyze the competition structure in China’s automotive market. Experimental results show that the proposed model can obtain deep insights of the competitive market structure and the competition power of each car in the market. It can also help managers understand user’s personalized interesting in the competitive market.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10660-019-09393-0</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0886-3647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-5753 |
ispartof | Electronic commerce research, 2020-09, Vol.20 (3), p.509-533 |
issn | 1389-5753 1572-9362 |
language | eng |
recordid | cdi_proquest_journals_2427540518 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Automobile industry Business and Management Competition Computational linguistics Computer Communication Networks Data Structures and Information Theory e-Commerce/e-business IT in Business Language processing Marketing research Markets Natural language interfaces Operations Research/Decision Theory Strategic management |
title | Segmenting market structure from multi-channel clickstream data: a novel generative model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmenting%20market%20structure%20from%20multi-channel%20clickstream%20data:%20a%20novel%20generative%20model&rft.jtitle=Electronic%20commerce%20research&rft.au=Qian,%20Yang&rft.date=2020-09-01&rft.volume=20&rft.issue=3&rft.spage=509&rft.epage=533&rft.pages=509-533&rft.issn=1389-5753&rft.eissn=1572-9362&rft_id=info:doi/10.1007/s10660-019-09393-0&rft_dat=%3Cgale_proqu%3EA718378139%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427540518&rft_id=info:pmid/&rft_galeid=A718378139&rfr_iscdi=true |