Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity
New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission...
Gespeichert in:
Veröffentlicht in: | The Protein Journal 2020-08, Vol.39 (4), p.328-336 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 4 |
container_start_page | 328 |
container_title | The Protein Journal |
container_volume | 39 |
creator | Poorakbar, Elahe Saboury, Ali Akbar Laame Rad, Behzad Khoshnevisan, Kamyar |
description | New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml
−1
. The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage. |
doi_str_mv | 10.1007/s10930-020-09906-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2427535675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716527554</galeid><sourcerecordid>A716527554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</originalsourceid><addsrcrecordid>eNp9UdtuFCEYJkZj6-oLeGFIvJ7KYRjgcrPa2qTqhXpNGA4rzQyswJjsvoFvLe3UemcI_PB_B_7kA-A1RhcYIf6uYCQp6hBpW0o0dKcn4BwzTrte9vTp_Z10VAh-Bl6UcosQEZKT5-CMkoFjhsU5-H09z2kMUzjpGlKEycOdm6Zl0sXBFGuCu5Rd9_VHa8JPeh9dDQZepcnCzzqmg87tPbkCL5do7hx0s3IWjke4LSsKtyZYqKOF7111eQ7x8atQS0Nr-BXq8SV45vVU3KuHugHfLz98233sbr5cXe-2N53pcV87ZliP-WCsoAPCHnPumfeeS28HLZhBQtgRkVH0kmuMjaNGc0OQlkz242DpBrxdfQ85_Vxcqeo2LbnNXRTpCWeUDe3YgIuVtdeTUyH6VLM2bVk3B5Oi86H1txwPrGlY3wRkFZicSsnOq0MOs85HhZG6i0utcakWl7qPS52a6M3DLMs4O_so-ZtPI9CVUBoU9y7_G_Y_tn8AvYyiUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427535675</pqid></control><display><type>article</type><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</creator><creatorcontrib>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</creatorcontrib><description>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml
−1
. The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</description><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>EISSN: 1875-8355</identifier><identifier>DOI: 10.1007/s10930-020-09906-z</identifier><identifier>PMID: 32671518</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Animal Anatomy ; Aspartate ; Aspartic acid ; Aspartic Acid - chemistry ; Binding ; Biochemistry ; Bioorganic Chemistry ; Catalytic activity ; Cellulase ; Cellulase - chemistry ; Chemistry ; Chemistry and Materials Science ; Diffraction ; Electron microscopy ; Enzymatic activity ; Enzyme activity ; Enzyme Stability ; Enzymes ; Enzymes, Immobilized - chemistry ; Filter paper ; Fourier transforms ; Fungal Proteins - chemistry ; Gold ; Gold - chemistry ; Histology ; Hot Temperature ; Hydrogen-Ion Concentration ; Immobilization ; Infrared spectroscopy ; Magnetite Nanoparticles - chemistry ; Magnetometers ; Microscopy ; Morphology ; Nanoparticles ; Organic Chemistry ; Scanning electron microscopy ; Talaromyces - enzymology ; Thermal stability ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>The Protein Journal, 2020-08, Vol.39 (4), p.328-336</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</citedby><cites>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</cites><orcidid>0000-0003-0604-9465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10930-020-09906-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10930-020-09906-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32671518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poorakbar, Elahe</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Laame Rad, Behzad</creatorcontrib><creatorcontrib>Khoshnevisan, Kamyar</creatorcontrib><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><title>The Protein Journal</title><addtitle>Protein J</addtitle><addtitle>Protein J</addtitle><description>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml
−1
. The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</description><subject>Analysis</subject><subject>Animal Anatomy</subject><subject>Aspartate</subject><subject>Aspartic acid</subject><subject>Aspartic Acid - chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Catalytic activity</subject><subject>Cellulase</subject><subject>Cellulase - chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffraction</subject><subject>Electron microscopy</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Filter paper</subject><subject>Fourier transforms</subject><subject>Fungal Proteins - chemistry</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Histology</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immobilization</subject><subject>Infrared spectroscopy</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetometers</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Scanning electron microscopy</subject><subject>Talaromyces - enzymology</subject><subject>Thermal stability</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1572-3887</issn><issn>1573-4943</issn><issn>1875-8355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UdtuFCEYJkZj6-oLeGFIvJ7KYRjgcrPa2qTqhXpNGA4rzQyswJjsvoFvLe3UemcI_PB_B_7kA-A1RhcYIf6uYCQp6hBpW0o0dKcn4BwzTrte9vTp_Z10VAh-Bl6UcosQEZKT5-CMkoFjhsU5-H09z2kMUzjpGlKEycOdm6Zl0sXBFGuCu5Rd9_VHa8JPeh9dDQZepcnCzzqmg87tPbkCL5do7hx0s3IWjke4LSsKtyZYqKOF7111eQ7x8atQS0Nr-BXq8SV45vVU3KuHugHfLz98233sbr5cXe-2N53pcV87ZliP-WCsoAPCHnPumfeeS28HLZhBQtgRkVH0kmuMjaNGc0OQlkz242DpBrxdfQ85_Vxcqeo2LbnNXRTpCWeUDe3YgIuVtdeTUyH6VLM2bVk3B5Oi86H1txwPrGlY3wRkFZicSsnOq0MOs85HhZG6i0utcakWl7qPS52a6M3DLMs4O_so-ZtPI9CVUBoU9y7_G_Y_tn8AvYyiUw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Poorakbar, Elahe</creator><creator>Saboury, Ali Akbar</creator><creator>Laame Rad, Behzad</creator><creator>Khoshnevisan, Kamyar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0604-9465</orcidid></search><sort><creationdate>20200801</creationdate><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><author>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animal Anatomy</topic><topic>Aspartate</topic><topic>Aspartic acid</topic><topic>Aspartic Acid - chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Catalytic activity</topic><topic>Cellulase</topic><topic>Cellulase - chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffraction</topic><topic>Electron microscopy</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Filter paper</topic><topic>Fourier transforms</topic><topic>Fungal Proteins - chemistry</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Histology</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immobilization</topic><topic>Infrared spectroscopy</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetometers</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Scanning electron microscopy</topic><topic>Talaromyces - enzymology</topic><topic>Thermal stability</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poorakbar, Elahe</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Laame Rad, Behzad</creatorcontrib><creatorcontrib>Khoshnevisan, Kamyar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>The Protein Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poorakbar, Elahe</au><au>Saboury, Ali Akbar</au><au>Laame Rad, Behzad</au><au>Khoshnevisan, Kamyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</atitle><jtitle>The Protein Journal</jtitle><stitle>Protein J</stitle><addtitle>Protein J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>1572-3887</issn><eissn>1573-4943</eissn><eissn>1875-8355</eissn><abstract>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml
−1
. The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32671518</pmid><doi>10.1007/s10930-020-09906-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0604-9465</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-3887 |
ispartof | The Protein Journal, 2020-08, Vol.39 (4), p.328-336 |
issn | 1572-3887 1573-4943 1875-8355 |
language | eng |
recordid | cdi_proquest_journals_2427535675 |
source | MEDLINE; SpringerLink Journals |
subjects | Analysis Animal Anatomy Aspartate Aspartic acid Aspartic Acid - chemistry Binding Biochemistry Bioorganic Chemistry Catalytic activity Cellulase Cellulase - chemistry Chemistry Chemistry and Materials Science Diffraction Electron microscopy Enzymatic activity Enzyme activity Enzyme Stability Enzymes Enzymes, Immobilized - chemistry Filter paper Fourier transforms Fungal Proteins - chemistry Gold Gold - chemistry Histology Hot Temperature Hydrogen-Ion Concentration Immobilization Infrared spectroscopy Magnetite Nanoparticles - chemistry Magnetometers Microscopy Morphology Nanoparticles Organic Chemistry Scanning electron microscopy Talaromyces - enzymology Thermal stability Transmission electron microscopy X-ray diffraction X-rays |
title | Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Cellulase%20onto%20Core-Shell%20Magnetic%20Gold%20Nanoparticles%20Functionalized%20by%20Aspartic%20Acid%20and%20Determination%20of%20its%20Activity&rft.jtitle=The%20Protein%20Journal&rft.au=Poorakbar,%20Elahe&rft.date=2020-08-01&rft.volume=39&rft.issue=4&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=1572-3887&rft.eissn=1573-4943&rft_id=info:doi/10.1007/s10930-020-09906-z&rft_dat=%3Cgale_proqu%3EA716527554%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427535675&rft_id=info:pmid/32671518&rft_galeid=A716527554&rfr_iscdi=true |