Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity

New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Protein Journal 2020-08, Vol.39 (4), p.328-336
Hauptverfasser: Poorakbar, Elahe, Saboury, Ali Akbar, Laame Rad, Behzad, Khoshnevisan, Kamyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 4
container_start_page 328
container_title The Protein Journal
container_volume 39
creator Poorakbar, Elahe
Saboury, Ali Akbar
Laame Rad, Behzad
Khoshnevisan, Kamyar
description New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml −1 . The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.
doi_str_mv 10.1007/s10930-020-09906-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2427535675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716527554</galeid><sourcerecordid>A716527554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</originalsourceid><addsrcrecordid>eNp9UdtuFCEYJkZj6-oLeGFIvJ7KYRjgcrPa2qTqhXpNGA4rzQyswJjsvoFvLe3UemcI_PB_B_7kA-A1RhcYIf6uYCQp6hBpW0o0dKcn4BwzTrte9vTp_Z10VAh-Bl6UcosQEZKT5-CMkoFjhsU5-H09z2kMUzjpGlKEycOdm6Zl0sXBFGuCu5Rd9_VHa8JPeh9dDQZepcnCzzqmg87tPbkCL5do7hx0s3IWjke4LSsKtyZYqKOF7111eQ7x8atQS0Nr-BXq8SV45vVU3KuHugHfLz98233sbr5cXe-2N53pcV87ZliP-WCsoAPCHnPumfeeS28HLZhBQtgRkVH0kmuMjaNGc0OQlkz242DpBrxdfQ85_Vxcqeo2LbnNXRTpCWeUDe3YgIuVtdeTUyH6VLM2bVk3B5Oi86H1txwPrGlY3wRkFZicSsnOq0MOs85HhZG6i0utcakWl7qPS52a6M3DLMs4O_so-ZtPI9CVUBoU9y7_G_Y_tn8AvYyiUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427535675</pqid></control><display><type>article</type><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</creator><creatorcontrib>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</creatorcontrib><description>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml −1 . The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</description><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>EISSN: 1875-8355</identifier><identifier>DOI: 10.1007/s10930-020-09906-z</identifier><identifier>PMID: 32671518</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Animal Anatomy ; Aspartate ; Aspartic acid ; Aspartic Acid - chemistry ; Binding ; Biochemistry ; Bioorganic Chemistry ; Catalytic activity ; Cellulase ; Cellulase - chemistry ; Chemistry ; Chemistry and Materials Science ; Diffraction ; Electron microscopy ; Enzymatic activity ; Enzyme activity ; Enzyme Stability ; Enzymes ; Enzymes, Immobilized - chemistry ; Filter paper ; Fourier transforms ; Fungal Proteins - chemistry ; Gold ; Gold - chemistry ; Histology ; Hot Temperature ; Hydrogen-Ion Concentration ; Immobilization ; Infrared spectroscopy ; Magnetite Nanoparticles - chemistry ; Magnetometers ; Microscopy ; Morphology ; Nanoparticles ; Organic Chemistry ; Scanning electron microscopy ; Talaromyces - enzymology ; Thermal stability ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>The Protein Journal, 2020-08, Vol.39 (4), p.328-336</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</citedby><cites>FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</cites><orcidid>0000-0003-0604-9465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10930-020-09906-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10930-020-09906-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32671518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poorakbar, Elahe</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Laame Rad, Behzad</creatorcontrib><creatorcontrib>Khoshnevisan, Kamyar</creatorcontrib><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><title>The Protein Journal</title><addtitle>Protein J</addtitle><addtitle>Protein J</addtitle><description>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml −1 . The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</description><subject>Analysis</subject><subject>Animal Anatomy</subject><subject>Aspartate</subject><subject>Aspartic acid</subject><subject>Aspartic Acid - chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Catalytic activity</subject><subject>Cellulase</subject><subject>Cellulase - chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diffraction</subject><subject>Electron microscopy</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Filter paper</subject><subject>Fourier transforms</subject><subject>Fungal Proteins - chemistry</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Histology</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immobilization</subject><subject>Infrared spectroscopy</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetometers</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Scanning electron microscopy</subject><subject>Talaromyces - enzymology</subject><subject>Thermal stability</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1572-3887</issn><issn>1573-4943</issn><issn>1875-8355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UdtuFCEYJkZj6-oLeGFIvJ7KYRjgcrPa2qTqhXpNGA4rzQyswJjsvoFvLe3UemcI_PB_B_7kA-A1RhcYIf6uYCQp6hBpW0o0dKcn4BwzTrte9vTp_Z10VAh-Bl6UcosQEZKT5-CMkoFjhsU5-H09z2kMUzjpGlKEycOdm6Zl0sXBFGuCu5Rd9_VHa8JPeh9dDQZepcnCzzqmg87tPbkCL5do7hx0s3IWjke4LSsKtyZYqKOF7111eQ7x8atQS0Nr-BXq8SV45vVU3KuHugHfLz98233sbr5cXe-2N53pcV87ZliP-WCsoAPCHnPumfeeS28HLZhBQtgRkVH0kmuMjaNGc0OQlkz242DpBrxdfQ85_Vxcqeo2LbnNXRTpCWeUDe3YgIuVtdeTUyH6VLM2bVk3B5Oi86H1txwPrGlY3wRkFZicSsnOq0MOs85HhZG6i0utcakWl7qPS52a6M3DLMs4O_so-ZtPI9CVUBoU9y7_G_Y_tn8AvYyiUw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Poorakbar, Elahe</creator><creator>Saboury, Ali Akbar</creator><creator>Laame Rad, Behzad</creator><creator>Khoshnevisan, Kamyar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0604-9465</orcidid></search><sort><creationdate>20200801</creationdate><title>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</title><author>Poorakbar, Elahe ; Saboury, Ali Akbar ; Laame Rad, Behzad ; Khoshnevisan, Kamyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5c54176cd83601f177f5fff79fd6a85c088db02b8497a11ce3ca7c20a9594b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animal Anatomy</topic><topic>Aspartate</topic><topic>Aspartic acid</topic><topic>Aspartic Acid - chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Catalytic activity</topic><topic>Cellulase</topic><topic>Cellulase - chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diffraction</topic><topic>Electron microscopy</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Filter paper</topic><topic>Fourier transforms</topic><topic>Fungal Proteins - chemistry</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Histology</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immobilization</topic><topic>Infrared spectroscopy</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetometers</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Scanning electron microscopy</topic><topic>Talaromyces - enzymology</topic><topic>Thermal stability</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poorakbar, Elahe</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Laame Rad, Behzad</creatorcontrib><creatorcontrib>Khoshnevisan, Kamyar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>The Protein Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poorakbar, Elahe</au><au>Saboury, Ali Akbar</au><au>Laame Rad, Behzad</au><au>Khoshnevisan, Kamyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity</atitle><jtitle>The Protein Journal</jtitle><stitle>Protein J</stitle><addtitle>Protein J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>1572-3887</issn><eissn>1573-4943</eissn><eissn>1875-8355</eissn><abstract>New support was fabricated to enhance the enzyme activity of cellulase following immobilization. Functionalized core-shell magnetic gold nanoparticles were prepared and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cellulase enzyme was immobilized on support via covalent bonding. The successful binding of the enzyme was chemically confirmed by Fourier-transform infrared spectroscopy (FTIR). The binding efficiency was 84% determined by Bradford assay. Filter Paper Activity (FPase) method was used to measure the enzyme activity at different temperatures (35–75 °C) and pH (2–8). The immobilized cellulase maintained 73% of its initial catalytic activity after 9 h and its activity is 0.78 mmol.ml −1 . The newly designed nano-system also enhanced the thermal stability of immobilized cellulase in comparison to free cellulase and facilitated its long term storage.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32671518</pmid><doi>10.1007/s10930-020-09906-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0604-9465</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-3887
ispartof The Protein Journal, 2020-08, Vol.39 (4), p.328-336
issn 1572-3887
1573-4943
1875-8355
language eng
recordid cdi_proquest_journals_2427535675
source MEDLINE; SpringerLink Journals
subjects Analysis
Animal Anatomy
Aspartate
Aspartic acid
Aspartic Acid - chemistry
Binding
Biochemistry
Bioorganic Chemistry
Catalytic activity
Cellulase
Cellulase - chemistry
Chemistry
Chemistry and Materials Science
Diffraction
Electron microscopy
Enzymatic activity
Enzyme activity
Enzyme Stability
Enzymes
Enzymes, Immobilized - chemistry
Filter paper
Fourier transforms
Fungal Proteins - chemistry
Gold
Gold - chemistry
Histology
Hot Temperature
Hydrogen-Ion Concentration
Immobilization
Infrared spectroscopy
Magnetite Nanoparticles - chemistry
Magnetometers
Microscopy
Morphology
Nanoparticles
Organic Chemistry
Scanning electron microscopy
Talaromyces - enzymology
Thermal stability
Transmission electron microscopy
X-ray diffraction
X-rays
title Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Cellulase%20onto%20Core-Shell%20Magnetic%20Gold%20Nanoparticles%20Functionalized%20by%20Aspartic%20Acid%20and%20Determination%20of%20its%20Activity&rft.jtitle=The%20Protein%20Journal&rft.au=Poorakbar,%20Elahe&rft.date=2020-08-01&rft.volume=39&rft.issue=4&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=1572-3887&rft.eissn=1573-4943&rft_id=info:doi/10.1007/s10930-020-09906-z&rft_dat=%3Cgale_proqu%3EA716527554%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427535675&rft_id=info:pmid/32671518&rft_galeid=A716527554&rfr_iscdi=true