Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations

The tropical cyclone (TC)‐induced concentric gravity waves (CGWs) are capable of propagating upward from convective sources in the troposphere to the upper atmosphere and creating concentric traveling ionospheric disturbances (CTIDs). To examine the CGWs propagation, we implement tropical cyclone‐in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2020-07, Vol.125 (7), p.n/a
Hauptverfasser: Zhao, Yuxin, Deng, Yue, Wang, Jing‐Song, Zhang, Shun‐Rong, Lin, Cissi Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 125
creator Zhao, Yuxin
Deng, Yue
Wang, Jing‐Song
Zhang, Shun‐Rong
Lin, Cissi Y.
description The tropical cyclone (TC)‐induced concentric gravity waves (CGWs) are capable of propagating upward from convective sources in the troposphere to the upper atmosphere and creating concentric traveling ionospheric disturbances (CTIDs). To examine the CGWs propagation, we implement tropical cyclone‐induced CGWs into the lower boundary of global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) and simulate the influence of CGWs on the ionosphere and thermosphere. GITM‐R is a three‐dimensional non‐hydrostatic general circulation model for the upper atmosphere with the local‐grid refinement module to enhance the resolution at the location of interest. In this study, CGWs induced by the typhoon Meranti in 2016 have been simulated. Information of the TC shape and moving trails is obtained from the TC best‐track dataset, and the gravity wave patterns are specified at the lower boundary of GITM‐R (100 km altitude). The horizontal wavelength and phase velocity of wave perturbation at the lower boundary are specified to be consistent with the TEC observations. The simulation reveals a clear evolution of CTIDs, which shows reasonable agreement with the GPS‐TEC observations. This is the first time the typhoon‐driven TEC perturbation has been simulated in a general circulation model. To further examine the dependence of the CTIDs on the wavelength and frequency of the gravity wave perturbation at the lower boundary, different waveforms have been tested as well. The magnitude of CTIDs has a negative correlation with the period but a positive correlation with the wavelength when the horizontal phase velocities are sufficiently fast against the critical‐level absorption. Key Points Tropical cyclone‐induced gravity waves have been simulated using a general circulation model (GCM) for the upper atmosphere The model has been used is the 3‐D global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) The simulation results reveal a clear evolution of traveling ionospheric disturbances (TIDs) and show a reasonable agreement with observations
doi_str_mv 10.1029/2019JA027675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427516911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427516911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3459-828ad4af62e71e7232708bb42e7c9ea96ed5ac56e10a9c76eb511b1d3151d2e73</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMoOHR3PkDAW6tJ2jSNd2Vo3Zgoc8PLkqZnrKNra9JOeucj-Iw-iRlV8Mpzc_7w4_s4H0IXlFxTwuQNI1TOYsJEKPgRGjEaSk8GhB3_zn5ETtHY2i1xFbkT5SOkl6ZuCq1KPOl1WVfw9fE5rfJOQ44To_ZF2-NXtQf8DKbtTKbaoq4sLircbgCvmgYMjttdbZsNGLjFyXT56CQW-KXYdeVAn6OTtSotjH_6GVrd3y0nD978KZlO4rmn_YBLL2KRygO1DhkICoL5TJAoywK3aglKhpBzpXkIlCipRQgZpzSjuU85zR3kn6HLQbcx9VsHtk23dWcqZ5mygAl-eJk66mqgtKmtNbBOG1PslOlTStJDkunfJB3uD_h7UUL_L5vOkkXMuZDS_wYYRXYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427516911</pqid></control><display><type>article</type><title>Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Zhao, Yuxin ; Deng, Yue ; Wang, Jing‐Song ; Zhang, Shun‐Rong ; Lin, Cissi Y.</creator><creatorcontrib>Zhao, Yuxin ; Deng, Yue ; Wang, Jing‐Song ; Zhang, Shun‐Rong ; Lin, Cissi Y.</creatorcontrib><description>The tropical cyclone (TC)‐induced concentric gravity waves (CGWs) are capable of propagating upward from convective sources in the troposphere to the upper atmosphere and creating concentric traveling ionospheric disturbances (CTIDs). To examine the CGWs propagation, we implement tropical cyclone‐induced CGWs into the lower boundary of global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) and simulate the influence of CGWs on the ionosphere and thermosphere. GITM‐R is a three‐dimensional non‐hydrostatic general circulation model for the upper atmosphere with the local‐grid refinement module to enhance the resolution at the location of interest. In this study, CGWs induced by the typhoon Meranti in 2016 have been simulated. Information of the TC shape and moving trails is obtained from the TC best‐track dataset, and the gravity wave patterns are specified at the lower boundary of GITM‐R (100 km altitude). The horizontal wavelength and phase velocity of wave perturbation at the lower boundary are specified to be consistent with the TEC observations. The simulation reveals a clear evolution of CTIDs, which shows reasonable agreement with the GPS‐TEC observations. This is the first time the typhoon‐driven TEC perturbation has been simulated in a general circulation model. To further examine the dependence of the CTIDs on the wavelength and frequency of the gravity wave perturbation at the lower boundary, different waveforms have been tested as well. The magnitude of CTIDs has a negative correlation with the period but a positive correlation with the wavelength when the horizontal phase velocities are sufficiently fast against the critical‐level absorption. Key Points Tropical cyclone‐induced gravity waves have been simulated using a general circulation model (GCM) for the upper atmosphere The model has been used is the 3‐D global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) The simulation results reveal a clear evolution of traveling ionospheric disturbances (TIDs) and show a reasonable agreement with observations</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2019JA027675</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Atmospheric circulation ; Computer simulation ; Correlation ; Cyclones ; General circulation models ; GITM ; gravity wave ; Gravity waves ; Grid refinement (mathematics) ; Ionosphere ; Ionospheric disturbances ; Ionospheric models ; Ionospheric propagation ; Perturbation ; Phase velocity ; simulation ; TEC ; Thermosphere ; Traveling ionospheric disturbances ; tropical cyclone ; Tropical cyclones ; Troposphere ; Typhoons ; Upper atmosphere ; Wave propagation ; Waveforms</subject><ispartof>Journal of geophysical research. Space physics, 2020-07, Vol.125 (7), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3459-828ad4af62e71e7232708bb42e7c9ea96ed5ac56e10a9c76eb511b1d3151d2e73</citedby><cites>FETCH-LOGICAL-c3459-828ad4af62e71e7232708bb42e7c9ea96ed5ac56e10a9c76eb511b1d3151d2e73</cites><orcidid>0000-0002-4989-5672 ; 0000-0002-2071-1948 ; 0000-0002-1946-3166 ; 0000-0002-8508-1588 ; 0000-0003-2943-6812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JA027675$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JA027675$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Zhao, Yuxin</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>Zhang, Shun‐Rong</creatorcontrib><creatorcontrib>Lin, Cissi Y.</creatorcontrib><title>Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations</title><title>Journal of geophysical research. Space physics</title><description>The tropical cyclone (TC)‐induced concentric gravity waves (CGWs) are capable of propagating upward from convective sources in the troposphere to the upper atmosphere and creating concentric traveling ionospheric disturbances (CTIDs). To examine the CGWs propagation, we implement tropical cyclone‐induced CGWs into the lower boundary of global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) and simulate the influence of CGWs on the ionosphere and thermosphere. GITM‐R is a three‐dimensional non‐hydrostatic general circulation model for the upper atmosphere with the local‐grid refinement module to enhance the resolution at the location of interest. In this study, CGWs induced by the typhoon Meranti in 2016 have been simulated. Information of the TC shape and moving trails is obtained from the TC best‐track dataset, and the gravity wave patterns are specified at the lower boundary of GITM‐R (100 km altitude). The horizontal wavelength and phase velocity of wave perturbation at the lower boundary are specified to be consistent with the TEC observations. The simulation reveals a clear evolution of CTIDs, which shows reasonable agreement with the GPS‐TEC observations. This is the first time the typhoon‐driven TEC perturbation has been simulated in a general circulation model. To further examine the dependence of the CTIDs on the wavelength and frequency of the gravity wave perturbation at the lower boundary, different waveforms have been tested as well. The magnitude of CTIDs has a negative correlation with the period but a positive correlation with the wavelength when the horizontal phase velocities are sufficiently fast against the critical‐level absorption. Key Points Tropical cyclone‐induced gravity waves have been simulated using a general circulation model (GCM) for the upper atmosphere The model has been used is the 3‐D global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) The simulation results reveal a clear evolution of traveling ionospheric disturbances (TIDs) and show a reasonable agreement with observations</description><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Cyclones</subject><subject>General circulation models</subject><subject>GITM</subject><subject>gravity wave</subject><subject>Gravity waves</subject><subject>Grid refinement (mathematics)</subject><subject>Ionosphere</subject><subject>Ionospheric disturbances</subject><subject>Ionospheric models</subject><subject>Ionospheric propagation</subject><subject>Perturbation</subject><subject>Phase velocity</subject><subject>simulation</subject><subject>TEC</subject><subject>Thermosphere</subject><subject>Traveling ionospheric disturbances</subject><subject>tropical cyclone</subject><subject>Tropical cyclones</subject><subject>Troposphere</subject><subject>Typhoons</subject><subject>Upper atmosphere</subject><subject>Wave propagation</subject><subject>Waveforms</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUxoMoOHR3PkDAW6tJ2jSNd2Vo3Zgoc8PLkqZnrKNra9JOeucj-Iw-iRlV8Mpzc_7w4_s4H0IXlFxTwuQNI1TOYsJEKPgRGjEaSk8GhB3_zn5ETtHY2i1xFbkT5SOkl6ZuCq1KPOl1WVfw9fE5rfJOQ44To_ZF2-NXtQf8DKbtTKbaoq4sLircbgCvmgYMjttdbZsNGLjFyXT56CQW-KXYdeVAn6OTtSotjH_6GVrd3y0nD978KZlO4rmn_YBLL2KRygO1DhkICoL5TJAoywK3aglKhpBzpXkIlCipRQgZpzSjuU85zR3kn6HLQbcx9VsHtk23dWcqZ5mygAl-eJk66mqgtKmtNbBOG1PslOlTStJDkunfJB3uD_h7UUL_L5vOkkXMuZDS_wYYRXYZ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Zhao, Yuxin</creator><creator>Deng, Yue</creator><creator>Wang, Jing‐Song</creator><creator>Zhang, Shun‐Rong</creator><creator>Lin, Cissi Y.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4989-5672</orcidid><orcidid>https://orcid.org/0000-0002-2071-1948</orcidid><orcidid>https://orcid.org/0000-0002-1946-3166</orcidid><orcidid>https://orcid.org/0000-0002-8508-1588</orcidid><orcidid>https://orcid.org/0000-0003-2943-6812</orcidid></search><sort><creationdate>202007</creationdate><title>Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations</title><author>Zhao, Yuxin ; Deng, Yue ; Wang, Jing‐Song ; Zhang, Shun‐Rong ; Lin, Cissi Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3459-828ad4af62e71e7232708bb42e7c9ea96ed5ac56e10a9c76eb511b1d3151d2e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Cyclones</topic><topic>General circulation models</topic><topic>GITM</topic><topic>gravity wave</topic><topic>Gravity waves</topic><topic>Grid refinement (mathematics)</topic><topic>Ionosphere</topic><topic>Ionospheric disturbances</topic><topic>Ionospheric models</topic><topic>Ionospheric propagation</topic><topic>Perturbation</topic><topic>Phase velocity</topic><topic>simulation</topic><topic>TEC</topic><topic>Thermosphere</topic><topic>Traveling ionospheric disturbances</topic><topic>tropical cyclone</topic><topic>Tropical cyclones</topic><topic>Troposphere</topic><topic>Typhoons</topic><topic>Upper atmosphere</topic><topic>Wave propagation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuxin</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>Zhang, Shun‐Rong</creatorcontrib><creatorcontrib>Lin, Cissi Y.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuxin</au><au>Deng, Yue</au><au>Wang, Jing‐Song</au><au>Zhang, Shun‐Rong</au><au>Lin, Cissi Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-07</date><risdate>2020</risdate><volume>125</volume><issue>7</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The tropical cyclone (TC)‐induced concentric gravity waves (CGWs) are capable of propagating upward from convective sources in the troposphere to the upper atmosphere and creating concentric traveling ionospheric disturbances (CTIDs). To examine the CGWs propagation, we implement tropical cyclone‐induced CGWs into the lower boundary of global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) and simulate the influence of CGWs on the ionosphere and thermosphere. GITM‐R is a three‐dimensional non‐hydrostatic general circulation model for the upper atmosphere with the local‐grid refinement module to enhance the resolution at the location of interest. In this study, CGWs induced by the typhoon Meranti in 2016 have been simulated. Information of the TC shape and moving trails is obtained from the TC best‐track dataset, and the gravity wave patterns are specified at the lower boundary of GITM‐R (100 km altitude). The horizontal wavelength and phase velocity of wave perturbation at the lower boundary are specified to be consistent with the TEC observations. The simulation reveals a clear evolution of CTIDs, which shows reasonable agreement with the GPS‐TEC observations. This is the first time the typhoon‐driven TEC perturbation has been simulated in a general circulation model. To further examine the dependence of the CTIDs on the wavelength and frequency of the gravity wave perturbation at the lower boundary, different waveforms have been tested as well. The magnitude of CTIDs has a negative correlation with the period but a positive correlation with the wavelength when the horizontal phase velocities are sufficiently fast against the critical‐level absorption. Key Points Tropical cyclone‐induced gravity waves have been simulated using a general circulation model (GCM) for the upper atmosphere The model has been used is the 3‐D global ionosphere‐thermosphere model with local‐grid refinement (GITM‐R) The simulation results reveal a clear evolution of traveling ionospheric disturbances (TIDs) and show a reasonable agreement with observations</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JA027675</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4989-5672</orcidid><orcidid>https://orcid.org/0000-0002-2071-1948</orcidid><orcidid>https://orcid.org/0000-0002-1946-3166</orcidid><orcidid>https://orcid.org/0000-0002-8508-1588</orcidid><orcidid>https://orcid.org/0000-0003-2943-6812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2020-07, Vol.125 (7), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2427516911
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Atmosphere
Atmospheric circulation
Computer simulation
Correlation
Cyclones
General circulation models
GITM
gravity wave
Gravity waves
Grid refinement (mathematics)
Ionosphere
Ionospheric disturbances
Ionospheric models
Ionospheric propagation
Perturbation
Phase velocity
simulation
TEC
Thermosphere
Traveling ionospheric disturbances
tropical cyclone
Tropical cyclones
Troposphere
Typhoons
Upper atmosphere
Wave propagation
Waveforms
title Tropical Cyclone‐Induced Gravity Wave Perturbations in the Upper Atmosphere: GITM‐R Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20Cyclone%E2%80%90Induced%20Gravity%20Wave%20Perturbations%20in%20the%20Upper%20Atmosphere:%20GITM%E2%80%90R%20Simulations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Zhao,%20Yuxin&rft.date=2020-07&rft.volume=125&rft.issue=7&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2019JA027675&rft_dat=%3Cproquest_cross%3E2427516911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427516911&rft_id=info:pmid/&rfr_iscdi=true