Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting

The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar‐to‐hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-07, Vol.32 (30), p.n/a
Hauptverfasser: Meng, Linxing, Wang, Min, Sun, Haoxuan, Tian, Wei, Xiao, Chenhong, Wu, Shaolong, Cao, Fengren, Li, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced materials (Weinheim)
container_volume 32
creator Meng, Linxing
Wang, Min
Sun, Haoxuan
Tian, Wei
Xiao, Chenhong
Wu, Shaolong
Cao, Fengren
Li, Liang
description The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar‐to‐hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2S4/In2S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen‐evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm−2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2S4. Such a high‐performance photoanode enables the integrated metal sulfide photoanode–perovskite solar cell system to deliver a STH conversion efficiency of 3.3%. CdIn2S4/In2S3 bulk heterojunction nanosheet arrays are designed as photoanodes of photoelectrochemical cells, which have high transparency and high separation efficiency up to 90%. This photoanode is integrated with a perovskite solar cell to form an unbiased solar water‐splitting system, delivering a solar to hydrogen conversion efficiency of 3.3%.
doi_str_mv 10.1002/adma.202002893
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2427467832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427467832</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1873-6ef004141c01a56141be7630ccbfdf829a69275b92170988e87901a1ac60e6743</originalsourceid><addsrcrecordid>eNo9kMFPwjAUxhujiYhePTfxPHjttm49IqiQYCQB4nHptg4Ko8WuSLh59-Lf6F9iCYbLe99Lfvnelw-hewIdAkC7otyIDgXqdcrDC9QiMSVBBDy-RC3gYRxwFqXX6KZpVgDAGbAW-h7IRi200gss8MwK3WyFldrhfjnSdBp1jzPEj7t6_fv1M5ROWrPa6cIpo_FkaZwR2pQSj7STCyucLPFeuaU3m3jys1krJ_HU1MLivqxrXBmL5zpXovHku-ctnm5r5ZxPcIuuKlE38u5_t9H8-WnWHwbjt5dRvzcOFiRNwoDJCiAiESmAiJh5kcuEhVAUeVVWKeWCcZrEOackAZ6mMk24J4koGEiWRGEbPZx8t9Z87GTjspXZWe1fZjSiScSSNKSe4idqr2p5yLZWbYQ9ZASyY9vZse3s3HbWG7z2zlf4B9ZXdsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427467832</pqid></control><display><type>article</type><title>Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meng, Linxing ; Wang, Min ; Sun, Haoxuan ; Tian, Wei ; Xiao, Chenhong ; Wu, Shaolong ; Cao, Fengren ; Li, Liang</creator><creatorcontrib>Meng, Linxing ; Wang, Min ; Sun, Haoxuan ; Tian, Wei ; Xiao, Chenhong ; Wu, Shaolong ; Cao, Fengren ; Li, Liang</creatorcontrib><description>The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar‐to‐hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2S4/In2S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen‐evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm−2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2S4. Such a high‐performance photoanode enables the integrated metal sulfide photoanode–perovskite solar cell system to deliver a STH conversion efficiency of 3.3%. CdIn2S4/In2S3 bulk heterojunction nanosheet arrays are designed as photoanodes of photoelectrochemical cells, which have high transparency and high separation efficiency up to 90%. This photoanode is integrated with a perovskite solar cell to form an unbiased solar water‐splitting system, delivering a solar to hydrogen conversion efficiency of 3.3%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002893</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>atomic layer deposition ; Atomic layer epitaxy ; bulk heterojunctions ; Conversion ; Efficiency ; Heterojunctions ; Materials science ; Perovskites ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; photoelectrochemical cells ; Photovoltaic cells ; Solar cells ; Tin dioxide ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2020-07, Vol.32 (30), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0708-7762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Meng, Linxing</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Sun, Haoxuan</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Xiao, Chenhong</creatorcontrib><creatorcontrib>Wu, Shaolong</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><title>Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting</title><title>Advanced materials (Weinheim)</title><description>The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar‐to‐hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2S4/In2S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen‐evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm−2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2S4. Such a high‐performance photoanode enables the integrated metal sulfide photoanode–perovskite solar cell system to deliver a STH conversion efficiency of 3.3%. CdIn2S4/In2S3 bulk heterojunction nanosheet arrays are designed as photoanodes of photoelectrochemical cells, which have high transparency and high separation efficiency up to 90%. This photoanode is integrated with a perovskite solar cell to form an unbiased solar water‐splitting system, delivering a solar to hydrogen conversion efficiency of 3.3%.</description><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>bulk heterojunctions</subject><subject>Conversion</subject><subject>Efficiency</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>Perovskites</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemical cells</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFPwjAUxhujiYhePTfxPHjttm49IqiQYCQB4nHptg4Ko8WuSLh59-Lf6F9iCYbLe99Lfvnelw-hewIdAkC7otyIDgXqdcrDC9QiMSVBBDy-RC3gYRxwFqXX6KZpVgDAGbAW-h7IRi200gss8MwK3WyFldrhfjnSdBp1jzPEj7t6_fv1M5ROWrPa6cIpo_FkaZwR2pQSj7STCyucLPFeuaU3m3jys1krJ_HU1MLivqxrXBmL5zpXovHku-ctnm5r5ZxPcIuuKlE38u5_t9H8-WnWHwbjt5dRvzcOFiRNwoDJCiAiESmAiJh5kcuEhVAUeVVWKeWCcZrEOackAZ6mMk24J4koGEiWRGEbPZx8t9Z87GTjspXZWe1fZjSiScSSNKSe4idqr2p5yLZWbYQ9ZASyY9vZse3s3HbWG7z2zlf4B9ZXdsY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Meng, Linxing</creator><creator>Wang, Min</creator><creator>Sun, Haoxuan</creator><creator>Tian, Wei</creator><creator>Xiao, Chenhong</creator><creator>Wu, Shaolong</creator><creator>Cao, Fengren</creator><creator>Li, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0708-7762</orcidid></search><sort><creationdate>20200701</creationdate><title>Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting</title><author>Meng, Linxing ; Wang, Min ; Sun, Haoxuan ; Tian, Wei ; Xiao, Chenhong ; Wu, Shaolong ; Cao, Fengren ; Li, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1873-6ef004141c01a56141be7630ccbfdf829a69275b92170988e87901a1ac60e6743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>bulk heterojunctions</topic><topic>Conversion</topic><topic>Efficiency</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>Perovskites</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemical cells</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Linxing</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Sun, Haoxuan</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Xiao, Chenhong</creatorcontrib><creatorcontrib>Wu, Shaolong</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Linxing</au><au>Wang, Min</au><au>Sun, Haoxuan</au><au>Tian, Wei</au><au>Xiao, Chenhong</au><au>Wu, Shaolong</au><au>Cao, Fengren</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>30</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The integration of photoelectrochemical photoanodes and solar cells to build an unbiased solar‐to‐hydrogen (STH) conversion system provides a promising way to solve the energy crisis. The key point is to develop highly transparent photoanodes, while its bulk separation efficiency (ηsep.) and surface injection efficiency are as high as possible. To resolve this contradiction, first a novel CdIn2S4/In2S3 bulk heterojunctions in the interior of nanosheets is designed as a photoanode with high transparency and an ultrahigh ηsep. up to 90%. Furthermore, decorating the ultrathin amorphous SnO2 layer by atomic layer deposition, the surface oxygen‐evolution kinetics of the photoanode are increased significantly. As a result, the onset potential of the photoanode shifts negatively to 0.02 V vs RHE, and the photocurrent density boosts to 2.98 mA cm−2 at 1.23 V vs RHE, which is ten times higher than that of pristine CdIn2S4. Such a high‐performance photoanode enables the integrated metal sulfide photoanode–perovskite solar cell system to deliver a STH conversion efficiency of 3.3%. CdIn2S4/In2S3 bulk heterojunction nanosheet arrays are designed as photoanodes of photoelectrochemical cells, which have high transparency and high separation efficiency up to 90%. This photoanode is integrated with a perovskite solar cell to form an unbiased solar water‐splitting system, delivering a solar to hydrogen conversion efficiency of 3.3%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202002893</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0708-7762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-07, Vol.32 (30), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2427467832
source Wiley Online Library Journals Frontfile Complete
subjects atomic layer deposition
Atomic layer epitaxy
bulk heterojunctions
Conversion
Efficiency
Heterojunctions
Materials science
Perovskites
Photoanodes
Photoelectric effect
Photoelectric emission
photoelectrochemical cells
Photovoltaic cells
Solar cells
Tin dioxide
Water splitting
title Designing a Transparent CdIn2S4/In2S3 Bulk‐Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20a%20Transparent%20CdIn2S4/In2S3%20Bulk%E2%80%90Heterojunction%20Photoanode%20Integrated%20with%20a%20Perovskite%20Solar%20Cell%20for%20Unbiased%20Water%20Splitting&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Meng,%20Linxing&rft.date=2020-07-01&rft.volume=32&rft.issue=30&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002893&rft_dat=%3Cproquest_wiley%3E2427467832%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427467832&rft_id=info:pmid/&rfr_iscdi=true