Modelling fuel injector spray characteristics in jet engines by using vine copulas

Summary The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society Series C: Applied Statistics 2020-08, Vol.69 (4), p.863-886
Hauptverfasser: Coblenz, Maximilian, Holz, Simon, Bauer, Hans‐Jörg, Grothe, Oliver, Koch, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 4
container_start_page 863
container_title Journal of the Royal Statistical Society Series C: Applied Statistics
container_volume 69
creator Coblenz, Maximilian
Holz, Simon
Bauer, Hans‐Jörg
Grothe, Oliver
Koch, Rainer
description Summary The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of drop size, x‐position, y‐position, x‐velocity and y‐velocity. The data are generated by numerical simulations of the fuel atomization process for several jet engine operating conditions. In combustion simulations, the variables are usually assumed to be independent at the start of the simulation, which is clearly not so as our data show. The dependence between some of the variables is non‐monotone and asymmetric, which makes the modelling task difficult. Our aim is to provide a realistic parametric model for the dependence structure. For this, we employ vine copulas which provide a flexible way to construct a multivariate distribution function. However, we need to use non‐standard bivariate copulas as building blocks. Using this copula representation enables us to create realistic samples of fuel spray droplets which improve the prediction of the combustion process and the pollutant emissions. Moreover, this approach is significantly faster than solving the set of differential equations describing fuel disintegration.
doi_str_mv 10.1111/rssc.12421
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427436596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427436596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-b54c8b0a13c3130cc98d095f85a70537ae224897bea2372491adf219fcefdff63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK5e_AUBb0LXfLVpjlL8ghVhV88hTZM1pbY1aZX-e1Pr2bkMwzzvDDwAXGK0wbFufAh6gwkj-AisMMt4InKeHYMVQjRNBEnZKTgLoUaxMGIrsHvuKtM0rj1AO5oGurY2eug8DL1XE9Tvyis9GO_C4HSIa1ibAZr24FoTYDnBMczZrzhC3fVjo8I5OLGqCebir6_B2_3da_GYbF8enorbbaIpwjgpU6bzEilMNcUUaS3yConU5qniKKVcGUJYLnhpFKGcMIFVZQkWVhtbWZvRNbha7va--xxNGGTdjb6NL2UUwBnNUjFT1wulfReCN1b23n0oP0mM5OxMzs7kr7MI4wX-do2Z_iHlbr8vlswPv2lvTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427436596</pqid></control><display><type>article</type><title>Modelling fuel injector spray characteristics in jet engines by using vine copulas</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Coblenz, Maximilian ; Holz, Simon ; Bauer, Hans‐Jörg ; Grothe, Oliver ; Koch, Rainer</creator><creatorcontrib>Coblenz, Maximilian ; Holz, Simon ; Bauer, Hans‐Jörg ; Grothe, Oliver ; Koch, Rainer</creatorcontrib><description>Summary The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of drop size, x‐position, y‐position, x‐velocity and y‐velocity. The data are generated by numerical simulations of the fuel atomization process for several jet engine operating conditions. In combustion simulations, the variables are usually assumed to be independent at the start of the simulation, which is clearly not so as our data show. The dependence between some of the variables is non‐monotone and asymmetric, which makes the modelling task difficult. Our aim is to provide a realistic parametric model for the dependence structure. For this, we employ vine copulas which provide a flexible way to construct a multivariate distribution function. However, we need to use non‐standard bivariate copulas as building blocks. Using this copula representation enables us to create realistic samples of fuel spray droplets which improve the prediction of the combustion process and the pollutant emissions. Moreover, this approach is significantly faster than solving the set of differential equations describing fuel disintegration.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12421</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Atomizing ; Bivariate analysis ; Combustion ; Computer simulation ; Copulas ; Dependence ; Dependence modelling ; Differential equations ; Disintegration ; Distribution functions ; Drop size ; Fuel drops ; Fuel injection ; Fuel sprays ; Fuels ; Injectors ; Jet engines ; Mathematical models ; Pollutants ; Simulation ; Smoothed particle hydrodynamics ; Spray ; Spray characteristics ; Vine copulas</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-08, Vol.69 (4), p.863-886</ispartof><rights>2020 Royal Statistical Society</rights><rights>Copyright © 2020 The Royal Statistical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-b54c8b0a13c3130cc98d095f85a70537ae224897bea2372491adf219fcefdff63</citedby><cites>FETCH-LOGICAL-c3011-b54c8b0a13c3130cc98d095f85a70537ae224897bea2372491adf219fcefdff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssc.12421$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssc.12421$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Coblenz, Maximilian</creatorcontrib><creatorcontrib>Holz, Simon</creatorcontrib><creatorcontrib>Bauer, Hans‐Jörg</creatorcontrib><creatorcontrib>Grothe, Oliver</creatorcontrib><creatorcontrib>Koch, Rainer</creatorcontrib><title>Modelling fuel injector spray characteristics in jet engines by using vine copulas</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>Summary The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of drop size, x‐position, y‐position, x‐velocity and y‐velocity. The data are generated by numerical simulations of the fuel atomization process for several jet engine operating conditions. In combustion simulations, the variables are usually assumed to be independent at the start of the simulation, which is clearly not so as our data show. The dependence between some of the variables is non‐monotone and asymmetric, which makes the modelling task difficult. Our aim is to provide a realistic parametric model for the dependence structure. For this, we employ vine copulas which provide a flexible way to construct a multivariate distribution function. However, we need to use non‐standard bivariate copulas as building blocks. Using this copula representation enables us to create realistic samples of fuel spray droplets which improve the prediction of the combustion process and the pollutant emissions. Moreover, this approach is significantly faster than solving the set of differential equations describing fuel disintegration.</description><subject>Atomizing</subject><subject>Bivariate analysis</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Copulas</subject><subject>Dependence</subject><subject>Dependence modelling</subject><subject>Differential equations</subject><subject>Disintegration</subject><subject>Distribution functions</subject><subject>Drop size</subject><subject>Fuel drops</subject><subject>Fuel injection</subject><subject>Fuel sprays</subject><subject>Fuels</subject><subject>Injectors</subject><subject>Jet engines</subject><subject>Mathematical models</subject><subject>Pollutants</subject><subject>Simulation</subject><subject>Smoothed particle hydrodynamics</subject><subject>Spray</subject><subject>Spray characteristics</subject><subject>Vine copulas</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK5e_AUBb0LXfLVpjlL8ghVhV88hTZM1pbY1aZX-e1Pr2bkMwzzvDDwAXGK0wbFufAh6gwkj-AisMMt4InKeHYMVQjRNBEnZKTgLoUaxMGIrsHvuKtM0rj1AO5oGurY2eug8DL1XE9Tvyis9GO_C4HSIa1ibAZr24FoTYDnBMczZrzhC3fVjo8I5OLGqCebir6_B2_3da_GYbF8enorbbaIpwjgpU6bzEilMNcUUaS3yConU5qniKKVcGUJYLnhpFKGcMIFVZQkWVhtbWZvRNbha7va--xxNGGTdjb6NL2UUwBnNUjFT1wulfReCN1b23n0oP0mM5OxMzs7kr7MI4wX-do2Z_iHlbr8vlswPv2lvTQ</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Coblenz, Maximilian</creator><creator>Holz, Simon</creator><creator>Bauer, Hans‐Jörg</creator><creator>Grothe, Oliver</creator><creator>Koch, Rainer</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202008</creationdate><title>Modelling fuel injector spray characteristics in jet engines by using vine copulas</title><author>Coblenz, Maximilian ; Holz, Simon ; Bauer, Hans‐Jörg ; Grothe, Oliver ; Koch, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-b54c8b0a13c3130cc98d095f85a70537ae224897bea2372491adf219fcefdff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomizing</topic><topic>Bivariate analysis</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Copulas</topic><topic>Dependence</topic><topic>Dependence modelling</topic><topic>Differential equations</topic><topic>Disintegration</topic><topic>Distribution functions</topic><topic>Drop size</topic><topic>Fuel drops</topic><topic>Fuel injection</topic><topic>Fuel sprays</topic><topic>Fuels</topic><topic>Injectors</topic><topic>Jet engines</topic><topic>Mathematical models</topic><topic>Pollutants</topic><topic>Simulation</topic><topic>Smoothed particle hydrodynamics</topic><topic>Spray</topic><topic>Spray characteristics</topic><topic>Vine copulas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coblenz, Maximilian</creatorcontrib><creatorcontrib>Holz, Simon</creatorcontrib><creatorcontrib>Bauer, Hans‐Jörg</creatorcontrib><creatorcontrib>Grothe, Oliver</creatorcontrib><creatorcontrib>Koch, Rainer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coblenz, Maximilian</au><au>Holz, Simon</au><au>Bauer, Hans‐Jörg</au><au>Grothe, Oliver</au><au>Koch, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling fuel injector spray characteristics in jet engines by using vine copulas</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2020-08</date><risdate>2020</risdate><volume>69</volume><issue>4</issue><spage>863</spage><epage>886</epage><pages>863-886</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>Summary The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of drop size, x‐position, y‐position, x‐velocity and y‐velocity. The data are generated by numerical simulations of the fuel atomization process for several jet engine operating conditions. In combustion simulations, the variables are usually assumed to be independent at the start of the simulation, which is clearly not so as our data show. The dependence between some of the variables is non‐monotone and asymmetric, which makes the modelling task difficult. Our aim is to provide a realistic parametric model for the dependence structure. For this, we employ vine copulas which provide a flexible way to construct a multivariate distribution function. However, we need to use non‐standard bivariate copulas as building blocks. Using this copula representation enables us to create realistic samples of fuel spray droplets which improve the prediction of the combustion process and the pollutant emissions. Moreover, this approach is significantly faster than solving the set of differential equations describing fuel disintegration.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssc.12421</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-08, Vol.69 (4), p.863-886
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_journals_2427436596
source EBSCOhost Business Source Complete; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Atomizing
Bivariate analysis
Combustion
Computer simulation
Copulas
Dependence
Dependence modelling
Differential equations
Disintegration
Distribution functions
Drop size
Fuel drops
Fuel injection
Fuel sprays
Fuels
Injectors
Jet engines
Mathematical models
Pollutants
Simulation
Smoothed particle hydrodynamics
Spray
Spray characteristics
Vine copulas
title Modelling fuel injector spray characteristics in jet engines by using vine copulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20fuel%20injector%20spray%20characteristics%20in%20jet%20engines%20by%20using%20vine%20copulas&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Coblenz,%20Maximilian&rft.date=2020-08&rft.volume=69&rft.issue=4&rft.spage=863&rft.epage=886&rft.pages=863-886&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12421&rft_dat=%3Cproquest_cross%3E2427436596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427436596&rft_id=info:pmid/&rfr_iscdi=true