Performance analysis of weighted low rank model with sparse image histograms for face recognition under lowlevel illumination and occlusion
In a broad range of computer vision applications, the purpose of Low-rank matrix approximation (LRMA) models is to recover the underlying low-rank matrix from its degraded observation. The latest LRMA methods - Robust Principal Component Analysis (RPCA) resort to using the nuclear norm minimization...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!