Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects

Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Permafrost and periglacial processes 2020-07, Vol.31 (3), p.371-382
Hauptverfasser: Holloway, Jean E., Lewkowicz, Antoni G., Douglas, Thomas A., Li, Xiaoying, Turetsky, Merritt R., Baltzer, Jennifer L., Jin, Huijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 371
container_title Permafrost and periglacial processes
container_volume 31
creator Holloway, Jean E.
Lewkowicz, Antoni G.
Douglas, Thomas A.
Li, Xiaoying
Turetsky, Merritt R.
Baltzer, Jennifer L.
Jin, Huijun
description Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafrost is ice‐rich, on ground subsidence and the development of thermokarst features. These thermal and geomorphic changes are initiated immediately following wildfire and alter the hydrology and biogeochemistry of permafrost landscapes, including the release of previously frozen carbon. In many locations, permafrost has been resilient, with key characteristics such as active layer thickness returning to pre‐fire conditions after several decades. However, permafrost near its southern limit is losing this resiliency as a result of ongoing climate warming and increasingly common vegetation state changes. Shifts in fire return intervals, severity and extent are expected to alter the trajectories of wildfire impacts on permafrost, and to enlarge spatial impacts to more regularly include the burning of tundra areas. Modeling indicates some lowland boreal forest and tundra environments will remain resilient while uplands and areas with thin organic layers and dry soils will experience rapid and irreversible permafrost degradation. More work is needed to relate modeling to empirical studies, particularly incorporating dynamic variables such as soil moisture, snow and thermokarst development, and to identify post‐fire permafrost responses for different landscape types and regions. Future progress requires further collaboration among geocryologists, ecologists, hydrologists, biogeochemists, modelers and remote sensing specialists.
doi_str_mv 10.1002/ppp.2048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427299508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427299508</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3828-cdd42241e54606de2f27cdbbc68542dcf17c2890f6f89ac08bdea16079cd8cc3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmMg8RMiceHS4aRpm3KbJj4mTWKHXVGUJY7UaWtD0m7i35Myrpzsw-PX9kPIPYMZA-BP3vsZByEvyIRBXWesyOFy7EWRlZWAa3IT4w4AZM7EhHwuD16bnnaOnpq9dU1A2rXUYzhoF7rY071ubTTaY3ymcxrw2OBpxAMabHuq7VG3BiNNGHVDP6QAnwY9mj7ekiun9xHv_uqUbF5fNov3bPXxtlzMV5nOJZeZsVZwLhgWooTSIne8Mna7NaUsBLfGscpwWYMrnay1Abm1qFkJVW2sNCafkodzbFr8NWDs1a4bQps2Ki54xeu6SO9OyeOZMum8GNApH5qDDt-KgRrdqeROje4Smp3R5AS__-XUer3-5X8AWmJxFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427299508</pqid></control><display><type>article</type><title>Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Holloway, Jean E. ; Lewkowicz, Antoni G. ; Douglas, Thomas A. ; Li, Xiaoying ; Turetsky, Merritt R. ; Baltzer, Jennifer L. ; Jin, Huijun</creator><creatorcontrib>Holloway, Jean E. ; Lewkowicz, Antoni G. ; Douglas, Thomas A. ; Li, Xiaoying ; Turetsky, Merritt R. ; Baltzer, Jennifer L. ; Jin, Huijun</creatorcontrib><description>Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafrost is ice‐rich, on ground subsidence and the development of thermokarst features. These thermal and geomorphic changes are initiated immediately following wildfire and alter the hydrology and biogeochemistry of permafrost landscapes, including the release of previously frozen carbon. In many locations, permafrost has been resilient, with key characteristics such as active layer thickness returning to pre‐fire conditions after several decades. However, permafrost near its southern limit is losing this resiliency as a result of ongoing climate warming and increasingly common vegetation state changes. Shifts in fire return intervals, severity and extent are expected to alter the trajectories of wildfire impacts on permafrost, and to enlarge spatial impacts to more regularly include the burning of tundra areas. Modeling indicates some lowland boreal forest and tundra environments will remain resilient while uplands and areas with thin organic layers and dry soils will experience rapid and irreversible permafrost degradation. More work is needed to relate modeling to empirical studies, particularly incorporating dynamic variables such as soil moisture, snow and thermokarst development, and to identify post‐fire permafrost responses for different landscape types and regions. Future progress requires further collaboration among geocryologists, ecologists, hydrologists, biogeochemists, modelers and remote sensing specialists.</description><identifier>ISSN: 1045-6740</identifier><identifier>EISSN: 1099-1530</identifier><identifier>DOI: 10.1002/ppp.2048</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Active layer ; Biodegradation ; Biogeochemistry ; Boreal forests ; Burning ; carbon cycling ; Climate ; Climate and vegetation ; Climate change ; Ecologists ; Fires ; Geocryology ; Geomorphology ; Global warming ; Ground temperatures ; Hydrologists ; Hydrology ; Landscape ; Modelling ; Organic soils ; Permafrost ; Remote sensing ; Soil ; Soil degradation ; Soil dynamics ; Soil layers ; Soil moisture ; Thermokarst ; Thickness ; Thin films ; Tundra ; wildfire ; Wildfires</subject><ispartof>Permafrost and periglacial processes, 2020-07, Vol.31 (3), p.371-382</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3828-cdd42241e54606de2f27cdbbc68542dcf17c2890f6f89ac08bdea16079cd8cc3</citedby><cites>FETCH-LOGICAL-a3828-cdd42241e54606de2f27cdbbc68542dcf17c2890f6f89ac08bdea16079cd8cc3</cites><orcidid>0000-0001-8760-7558 ; 0000-0003-3246-1090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppp.2048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppp.2048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Holloway, Jean E.</creatorcontrib><creatorcontrib>Lewkowicz, Antoni G.</creatorcontrib><creatorcontrib>Douglas, Thomas A.</creatorcontrib><creatorcontrib>Li, Xiaoying</creatorcontrib><creatorcontrib>Turetsky, Merritt R.</creatorcontrib><creatorcontrib>Baltzer, Jennifer L.</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><title>Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects</title><title>Permafrost and periglacial processes</title><description>Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafrost is ice‐rich, on ground subsidence and the development of thermokarst features. These thermal and geomorphic changes are initiated immediately following wildfire and alter the hydrology and biogeochemistry of permafrost landscapes, including the release of previously frozen carbon. In many locations, permafrost has been resilient, with key characteristics such as active layer thickness returning to pre‐fire conditions after several decades. However, permafrost near its southern limit is losing this resiliency as a result of ongoing climate warming and increasingly common vegetation state changes. Shifts in fire return intervals, severity and extent are expected to alter the trajectories of wildfire impacts on permafrost, and to enlarge spatial impacts to more regularly include the burning of tundra areas. Modeling indicates some lowland boreal forest and tundra environments will remain resilient while uplands and areas with thin organic layers and dry soils will experience rapid and irreversible permafrost degradation. More work is needed to relate modeling to empirical studies, particularly incorporating dynamic variables such as soil moisture, snow and thermokarst development, and to identify post‐fire permafrost responses for different landscape types and regions. Future progress requires further collaboration among geocryologists, ecologists, hydrologists, biogeochemists, modelers and remote sensing specialists.</description><subject>Active layer</subject><subject>Biodegradation</subject><subject>Biogeochemistry</subject><subject>Boreal forests</subject><subject>Burning</subject><subject>carbon cycling</subject><subject>Climate</subject><subject>Climate and vegetation</subject><subject>Climate change</subject><subject>Ecologists</subject><subject>Fires</subject><subject>Geocryology</subject><subject>Geomorphology</subject><subject>Global warming</subject><subject>Ground temperatures</subject><subject>Hydrologists</subject><subject>Hydrology</subject><subject>Landscape</subject><subject>Modelling</subject><subject>Organic soils</subject><subject>Permafrost</subject><subject>Remote sensing</subject><subject>Soil</subject><subject>Soil degradation</subject><subject>Soil dynamics</subject><subject>Soil layers</subject><subject>Soil moisture</subject><subject>Thermokarst</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Tundra</subject><subject>wildfire</subject><subject>Wildfires</subject><issn>1045-6740</issn><issn>1099-1530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmMg8RMiceHS4aRpm3KbJj4mTWKHXVGUJY7UaWtD0m7i35Myrpzsw-PX9kPIPYMZA-BP3vsZByEvyIRBXWesyOFy7EWRlZWAa3IT4w4AZM7EhHwuD16bnnaOnpq9dU1A2rXUYzhoF7rY071ubTTaY3ymcxrw2OBpxAMabHuq7VG3BiNNGHVDP6QAnwY9mj7ekiun9xHv_uqUbF5fNov3bPXxtlzMV5nOJZeZsVZwLhgWooTSIne8Mna7NaUsBLfGscpwWYMrnay1Abm1qFkJVW2sNCafkodzbFr8NWDs1a4bQps2Ki54xeu6SO9OyeOZMum8GNApH5qDDt-KgRrdqeROje4Smp3R5AS__-XUer3-5X8AWmJxFw</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Holloway, Jean E.</creator><creator>Lewkowicz, Antoni G.</creator><creator>Douglas, Thomas A.</creator><creator>Li, Xiaoying</creator><creator>Turetsky, Merritt R.</creator><creator>Baltzer, Jennifer L.</creator><creator>Jin, Huijun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8760-7558</orcidid><orcidid>https://orcid.org/0000-0003-3246-1090</orcidid></search><sort><creationdate>202007</creationdate><title>Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects</title><author>Holloway, Jean E. ; Lewkowicz, Antoni G. ; Douglas, Thomas A. ; Li, Xiaoying ; Turetsky, Merritt R. ; Baltzer, Jennifer L. ; Jin, Huijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3828-cdd42241e54606de2f27cdbbc68542dcf17c2890f6f89ac08bdea16079cd8cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active layer</topic><topic>Biodegradation</topic><topic>Biogeochemistry</topic><topic>Boreal forests</topic><topic>Burning</topic><topic>carbon cycling</topic><topic>Climate</topic><topic>Climate and vegetation</topic><topic>Climate change</topic><topic>Ecologists</topic><topic>Fires</topic><topic>Geocryology</topic><topic>Geomorphology</topic><topic>Global warming</topic><topic>Ground temperatures</topic><topic>Hydrologists</topic><topic>Hydrology</topic><topic>Landscape</topic><topic>Modelling</topic><topic>Organic soils</topic><topic>Permafrost</topic><topic>Remote sensing</topic><topic>Soil</topic><topic>Soil degradation</topic><topic>Soil dynamics</topic><topic>Soil layers</topic><topic>Soil moisture</topic><topic>Thermokarst</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Tundra</topic><topic>wildfire</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holloway, Jean E.</creatorcontrib><creatorcontrib>Lewkowicz, Antoni G.</creatorcontrib><creatorcontrib>Douglas, Thomas A.</creatorcontrib><creatorcontrib>Li, Xiaoying</creatorcontrib><creatorcontrib>Turetsky, Merritt R.</creatorcontrib><creatorcontrib>Baltzer, Jennifer L.</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Permafrost and periglacial processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holloway, Jean E.</au><au>Lewkowicz, Antoni G.</au><au>Douglas, Thomas A.</au><au>Li, Xiaoying</au><au>Turetsky, Merritt R.</au><au>Baltzer, Jennifer L.</au><au>Jin, Huijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects</atitle><jtitle>Permafrost and periglacial processes</jtitle><date>2020-07</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>371</spage><epage>382</epage><pages>371-382</pages><issn>1045-6740</issn><eissn>1099-1530</eissn><abstract>Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafrost is ice‐rich, on ground subsidence and the development of thermokarst features. These thermal and geomorphic changes are initiated immediately following wildfire and alter the hydrology and biogeochemistry of permafrost landscapes, including the release of previously frozen carbon. In many locations, permafrost has been resilient, with key characteristics such as active layer thickness returning to pre‐fire conditions after several decades. However, permafrost near its southern limit is losing this resiliency as a result of ongoing climate warming and increasingly common vegetation state changes. Shifts in fire return intervals, severity and extent are expected to alter the trajectories of wildfire impacts on permafrost, and to enlarge spatial impacts to more regularly include the burning of tundra areas. Modeling indicates some lowland boreal forest and tundra environments will remain resilient while uplands and areas with thin organic layers and dry soils will experience rapid and irreversible permafrost degradation. More work is needed to relate modeling to empirical studies, particularly incorporating dynamic variables such as soil moisture, snow and thermokarst development, and to identify post‐fire permafrost responses for different landscape types and regions. Future progress requires further collaboration among geocryologists, ecologists, hydrologists, biogeochemists, modelers and remote sensing specialists.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppp.2048</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8760-7558</orcidid><orcidid>https://orcid.org/0000-0003-3246-1090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-6740
ispartof Permafrost and periglacial processes, 2020-07, Vol.31 (3), p.371-382
issn 1045-6740
1099-1530
language eng
recordid cdi_proquest_journals_2427299508
source Wiley Online Library Journals Frontfile Complete
subjects Active layer
Biodegradation
Biogeochemistry
Boreal forests
Burning
carbon cycling
Climate
Climate and vegetation
Climate change
Ecologists
Fires
Geocryology
Geomorphology
Global warming
Ground temperatures
Hydrologists
Hydrology
Landscape
Modelling
Organic soils
Permafrost
Remote sensing
Soil
Soil degradation
Soil dynamics
Soil layers
Soil moisture
Thermokarst
Thickness
Thin films
Tundra
wildfire
Wildfires
title Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20wildfire%20on%20permafrost%20landscapes:%20A%20review%20of%20recent%20advances%20and%20future%20prospects&rft.jtitle=Permafrost%20and%20periglacial%20processes&rft.au=Holloway,%20Jean%20E.&rft.date=2020-07&rft.volume=31&rft.issue=3&rft.spage=371&rft.epage=382&rft.pages=371-382&rft.issn=1045-6740&rft.eissn=1099-1530&rft_id=info:doi/10.1002/ppp.2048&rft_dat=%3Cproquest_cross%3E2427299508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427299508&rft_id=info:pmid/&rfr_iscdi=true