Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model

This study addresses the problem of nonlinear error predictive compensation to achieve high positioning accuracy for advanced industrial applications. An improved calibration method based on the generalisation performance evaluation is proposed to enhance the stability and accuracy of robot calibrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-15
Hauptverfasser: Chen, Xiaoyan, Sun, Yilin, Zhang, Qiuju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Chen, Xiaoyan
Sun, Yilin
Zhang, Qiuju
description This study addresses the problem of nonlinear error predictive compensation to achieve high positioning accuracy for advanced industrial applications. An improved calibration method based on the generalisation performance evaluation is proposed to enhance the stability and accuracy of robot calibration. With the development of technology, a deep neural network (DNN) optimised by a genetic algorithm (GA) is applied to predict the nonlinear error of the calibrated robot. To address the change of external payload, an extra compliance error model is established with a linear piecewise method. A global compensation method combining the GA-DNN nonlinear regression prediction model and the compliance error model is then proposed to achieve the robot’s high-precision positioning performance under any external payload. Experimental results obtained on a Staubli RX160L robot with a FARO laser tracker are introduced to demonstrate the effectiveness and benefits of our proposed methodology. The enhanced positioning accuracy can reach 0.22 mm with 98% probability (i.e., the maximum positioning error in all test data).
doi_str_mv 10.1155/2020/3981081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2427221074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427221074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3b8a01c46970ee731e57268915c5a28264e55a1f4302f9f2ae23911596ef51aa3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKs3z7LgUWN39iMfxxprFWwFUfAWpsnEpqS7dZOq_femTcGjpxlmnncGHs87B34DoPVAcMEHMo6AR3Dg9UAH0tegwsO250L5IOT7sXdS1wvOBWiIet5m9GWrdVNag27DXuzMNizBqpw53A4ZmpxNralKQ-hYYpcrMnW3mlAzt7mt7MeG3WJNOWuH46F_N53uYmjY6KdxuEtVJZqM2Mg569jE5lSdekcFVjWd7Wvfe7sfvSYP_tPz-DEZPvmZEkHjy1mEHDIVxCEnCiWQDkUQxaAzjSISgSKtEQoluSjiQiAJGbc24oAKDYiy7112d1fOfq6pbtKFXTvTvkyFEqEQwEPVUtcdlTlb146KdOXKZeskBZ5u5aZbuelebotfdfi8NDl-l__RFx1NLUMF_tEQq0hp-Qs4VoIv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427221074</pqid></control><display><type>article</type><title>Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Xiaoyan ; Sun, Yilin ; Zhang, Qiuju</creator><contributor>Crippa, Paolo ; Paolo Crippa</contributor><creatorcontrib>Chen, Xiaoyan ; Sun, Yilin ; Zhang, Qiuju ; Crippa, Paolo ; Paolo Crippa</creatorcontrib><description>This study addresses the problem of nonlinear error predictive compensation to achieve high positioning accuracy for advanced industrial applications. An improved calibration method based on the generalisation performance evaluation is proposed to enhance the stability and accuracy of robot calibration. With the development of technology, a deep neural network (DNN) optimised by a genetic algorithm (GA) is applied to predict the nonlinear error of the calibrated robot. To address the change of external payload, an extra compliance error model is established with a linear piecewise method. A global compensation method combining the GA-DNN nonlinear regression prediction model and the compliance error model is then proposed to achieve the robot’s high-precision positioning performance under any external payload. Experimental results obtained on a Staubli RX160L robot with a FARO laser tracker are introduced to demonstrate the effectiveness and benefits of our proposed methodology. The enhanced positioning accuracy can reach 0.22 mm with 98% probability (i.e., the maximum positioning error in all test data).</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3981081</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Adaptation ; Artificial neural networks ; Calibration ; Compliance ; Error analysis ; Error compensation ; Genetic algorithms ; Identification ; Industrial applications ; Kinematics ; Neural networks ; Performance evaluation ; Prediction models ; Regression models ; Robots ; Stability analysis ; Statistical analysis</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Xiaoyan Chen et al.</rights><rights>Copyright © 2020 Xiaoyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3b8a01c46970ee731e57268915c5a28264e55a1f4302f9f2ae23911596ef51aa3</citedby><cites>FETCH-LOGICAL-c426t-3b8a01c46970ee731e57268915c5a28264e55a1f4302f9f2ae23911596ef51aa3</cites><orcidid>0000-0002-7002-5444 ; 0000-0003-0773-7120 ; 0000-0002-0885-2588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27925,27926,27927</link.rule.ids></links><search><contributor>Crippa, Paolo</contributor><contributor>Paolo Crippa</contributor><creatorcontrib>Chen, Xiaoyan</creatorcontrib><creatorcontrib>Sun, Yilin</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><title>Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model</title><title>Mathematical problems in engineering</title><description>This study addresses the problem of nonlinear error predictive compensation to achieve high positioning accuracy for advanced industrial applications. An improved calibration method based on the generalisation performance evaluation is proposed to enhance the stability and accuracy of robot calibration. With the development of technology, a deep neural network (DNN) optimised by a genetic algorithm (GA) is applied to predict the nonlinear error of the calibrated robot. To address the change of external payload, an extra compliance error model is established with a linear piecewise method. A global compensation method combining the GA-DNN nonlinear regression prediction model and the compliance error model is then proposed to achieve the robot’s high-precision positioning performance under any external payload. Experimental results obtained on a Staubli RX160L robot with a FARO laser tracker are introduced to demonstrate the effectiveness and benefits of our proposed methodology. The enhanced positioning accuracy can reach 0.22 mm with 98% probability (i.e., the maximum positioning error in all test data).</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Compliance</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>Genetic algorithms</subject><subject>Identification</subject><subject>Industrial applications</subject><subject>Kinematics</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Robots</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1Lw0AQhoMoWKs3z7LgUWN39iMfxxprFWwFUfAWpsnEpqS7dZOq_femTcGjpxlmnncGHs87B34DoPVAcMEHMo6AR3Dg9UAH0tegwsO250L5IOT7sXdS1wvOBWiIet5m9GWrdVNag27DXuzMNizBqpw53A4ZmpxNralKQ-hYYpcrMnW3mlAzt7mt7MeG3WJNOWuH46F_N53uYmjY6KdxuEtVJZqM2Mg569jE5lSdekcFVjWd7Wvfe7sfvSYP_tPz-DEZPvmZEkHjy1mEHDIVxCEnCiWQDkUQxaAzjSISgSKtEQoluSjiQiAJGbc24oAKDYiy7112d1fOfq6pbtKFXTvTvkyFEqEQwEPVUtcdlTlb146KdOXKZeskBZ5u5aZbuelebotfdfi8NDl-l__RFx1NLUMF_tEQq0hp-Qs4VoIv</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xiaoyan</creator><creator>Sun, Yilin</creator><creator>Zhang, Qiuju</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7002-5444</orcidid><orcidid>https://orcid.org/0000-0003-0773-7120</orcidid><orcidid>https://orcid.org/0000-0002-0885-2588</orcidid></search><sort><creationdate>2020</creationdate><title>Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model</title><author>Chen, Xiaoyan ; Sun, Yilin ; Zhang, Qiuju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3b8a01c46970ee731e57268915c5a28264e55a1f4302f9f2ae23911596ef51aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Compliance</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>Genetic algorithms</topic><topic>Identification</topic><topic>Industrial applications</topic><topic>Kinematics</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Robots</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyan</creatorcontrib><creatorcontrib>Sun, Yilin</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyan</au><au>Sun, Yilin</au><au>Zhang, Qiuju</au><au>Crippa, Paolo</au><au>Paolo Crippa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This study addresses the problem of nonlinear error predictive compensation to achieve high positioning accuracy for advanced industrial applications. An improved calibration method based on the generalisation performance evaluation is proposed to enhance the stability and accuracy of robot calibration. With the development of technology, a deep neural network (DNN) optimised by a genetic algorithm (GA) is applied to predict the nonlinear error of the calibrated robot. To address the change of external payload, an extra compliance error model is established with a linear piecewise method. A global compensation method combining the GA-DNN nonlinear regression prediction model and the compliance error model is then proposed to achieve the robot’s high-precision positioning performance under any external payload. Experimental results obtained on a Staubli RX160L robot with a FARO laser tracker are introduced to demonstrate the effectiveness and benefits of our proposed methodology. The enhanced positioning accuracy can reach 0.22 mm with 98% probability (i.e., the maximum positioning error in all test data).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3981081</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7002-5444</orcidid><orcidid>https://orcid.org/0000-0003-0773-7120</orcidid><orcidid>https://orcid.org/0000-0002-0885-2588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2427221074
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Adaptation
Artificial neural networks
Calibration
Compliance
Error analysis
Error compensation
Genetic algorithms
Identification
Industrial applications
Kinematics
Neural networks
Performance evaluation
Prediction models
Regression models
Robots
Stability analysis
Statistical analysis
title Evolutionary Robot Calibration and Nonlinear Compensation Methodology Based on GA-DNN and an Extra Compliance Error Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Robot%20Calibration%20and%20Nonlinear%20Compensation%20Methodology%20Based%20on%20GA-DNN%20and%20an%20Extra%20Compliance%20Error%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Chen,%20Xiaoyan&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3981081&rft_dat=%3Cproquest_cross%3E2427221074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427221074&rft_id=info:pmid/&rfr_iscdi=true