Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion
This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheat...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2020, Vol.56 (1), p.23-35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Combustion, explosion, and shock waves |
container_volume | 56 |
creator | Dogkas, E. Lytras, I. Koutmos, P. Kontogouris, G. |
description | This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space. |
doi_str_mv | 10.1134/S0010508220010037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426811905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426811905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHaWWAc8jp2ky6qigKgEamHDJrKdcUnVxsFOBOy4AzfkJCQtEgvEakZ__vujGUJOgZ0DxOJiwRgwyTLO-4bF6R4ZgEzjKIuF3CeDXo36-SE5CmHFGONcJAPyNMeiNVjQ27LCpjR0YZ5xg4Fa5-nEbeo1vtE5KtOU1ZJO1-51q7aNakpXBeosvfeuVhV-fXyOyy2j29APj8mBVeuAJz91SB6nlw-T62h2d3UzGc8iE0PSRHqU6YIXUmOqmAJpbZFBhkZrlFakSmcAooiZ0TYxcmQAbMozAzwVorthFA_J2S639u6lxdDkK9f6qluZc8GTDh8x2blg5zLeheDR5rUvN8q_58Dy_oX5nxd2DN8xofNWS_S_yf9D38NNc40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426811905</pqid></control><display><type>article</type><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</creator><creatorcontrib>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</creatorcontrib><description>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508220010037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamics ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Control ; Dynamical Systems ; Engineering ; Heating ; High temperature ; Iterative methods ; Jet flow ; Laminar flow ; Optimization ; Oxidation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Premixed flames ; Propane ; Reacting flow ; Turbulent flames ; Two dimensional flow ; Two dimensional jets ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2020, Vol.56 (1), p.23-35</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</citedby><cites>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508220010037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508220010037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dogkas, E.</creatorcontrib><creatorcontrib>Lytras, I.</creatorcontrib><creatorcontrib>Koutmos, P.</creatorcontrib><creatorcontrib>Kontogouris, G.</creatorcontrib><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</description><subject>Aerodynamics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heating</subject><subject>High temperature</subject><subject>Iterative methods</subject><subject>Jet flow</subject><subject>Laminar flow</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Premixed flames</subject><subject>Propane</subject><subject>Reacting flow</subject><subject>Turbulent flames</subject><subject>Two dimensional flow</subject><subject>Two dimensional jets</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqVwAHaWWAc8jp2ky6qigKgEamHDJrKdcUnVxsFOBOy4AzfkJCQtEgvEakZ__vujGUJOgZ0DxOJiwRgwyTLO-4bF6R4ZgEzjKIuF3CeDXo36-SE5CmHFGONcJAPyNMeiNVjQ27LCpjR0YZ5xg4Fa5-nEbeo1vtE5KtOU1ZJO1-51q7aNakpXBeosvfeuVhV-fXyOyy2j29APj8mBVeuAJz91SB6nlw-T62h2d3UzGc8iE0PSRHqU6YIXUmOqmAJpbZFBhkZrlFakSmcAooiZ0TYxcmQAbMozAzwVorthFA_J2S639u6lxdDkK9f6qluZc8GTDh8x2blg5zLeheDR5rUvN8q_58Dy_oX5nxd2DN8xofNWS_S_yf9D38NNc40</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dogkas, E.</creator><creator>Lytras, I.</creator><creator>Koutmos, P.</creator><creator>Kontogouris, G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><author>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heating</topic><topic>High temperature</topic><topic>Iterative methods</topic><topic>Jet flow</topic><topic>Laminar flow</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Premixed flames</topic><topic>Propane</topic><topic>Reacting flow</topic><topic>Turbulent flames</topic><topic>Two dimensional flow</topic><topic>Two dimensional jets</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogkas, E.</creatorcontrib><creatorcontrib>Lytras, I.</creatorcontrib><creatorcontrib>Koutmos, P.</creatorcontrib><creatorcontrib>Kontogouris, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogkas, E.</au><au>Lytras, I.</au><au>Koutmos, P.</au><au>Kontogouris, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2020</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>23</spage><epage>35</epage><pages>23-35</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508220010037</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2020, Vol.56 (1), p.23-35 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_proquest_journals_2426811905 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerodynamics Classical and Continuum Physics Classical Mechanics Computational fluid dynamics Computer simulation Control Dynamical Systems Engineering Heating High temperature Iterative methods Jet flow Laminar flow Optimization Oxidation Physical Chemistry Physics Physics and Astronomy Premixed flames Propane Reacting flow Turbulent flames Two dimensional flow Two dimensional jets Vibration |
title | Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Kinetic%20Schemes%20for%20Complex%20Reacting%20Flow%20Computations%20of%20Propane%E2%80%93Air%20Combustion&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Dogkas,%20E.&rft.date=2020&rft.volume=56&rft.issue=1&rft.spage=23&rft.epage=35&rft.pages=23-35&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508220010037&rft_dat=%3Cproquest_cross%3E2426811905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426811905&rft_id=info:pmid/&rfr_iscdi=true |