Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion

This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2020, Vol.56 (1), p.23-35
Hauptverfasser: Dogkas, E., Lytras, I., Koutmos, P., Kontogouris, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 23
container_title Combustion, explosion, and shock waves
container_volume 56
creator Dogkas, E.
Lytras, I.
Koutmos, P.
Kontogouris, G.
description This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.
doi_str_mv 10.1134/S0010508220010037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426811905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426811905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHaWWAc8jp2ky6qigKgEamHDJrKdcUnVxsFOBOy4AzfkJCQtEgvEakZ__vujGUJOgZ0DxOJiwRgwyTLO-4bF6R4ZgEzjKIuF3CeDXo36-SE5CmHFGONcJAPyNMeiNVjQ27LCpjR0YZ5xg4Fa5-nEbeo1vtE5KtOU1ZJO1-51q7aNakpXBeosvfeuVhV-fXyOyy2j29APj8mBVeuAJz91SB6nlw-T62h2d3UzGc8iE0PSRHqU6YIXUmOqmAJpbZFBhkZrlFakSmcAooiZ0TYxcmQAbMozAzwVorthFA_J2S639u6lxdDkK9f6qluZc8GTDh8x2blg5zLeheDR5rUvN8q_58Dy_oX5nxd2DN8xofNWS_S_yf9D38NNc40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426811905</pqid></control><display><type>article</type><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</creator><creatorcontrib>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</creatorcontrib><description>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508220010037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamics ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Control ; Dynamical Systems ; Engineering ; Heating ; High temperature ; Iterative methods ; Jet flow ; Laminar flow ; Optimization ; Oxidation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Premixed flames ; Propane ; Reacting flow ; Turbulent flames ; Two dimensional flow ; Two dimensional jets ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2020, Vol.56 (1), p.23-35</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</citedby><cites>FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508220010037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508220010037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dogkas, E.</creatorcontrib><creatorcontrib>Lytras, I.</creatorcontrib><creatorcontrib>Koutmos, P.</creatorcontrib><creatorcontrib>Kontogouris, G.</creatorcontrib><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</description><subject>Aerodynamics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heating</subject><subject>High temperature</subject><subject>Iterative methods</subject><subject>Jet flow</subject><subject>Laminar flow</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Premixed flames</subject><subject>Propane</subject><subject>Reacting flow</subject><subject>Turbulent flames</subject><subject>Two dimensional flow</subject><subject>Two dimensional jets</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqVwAHaWWAc8jp2ky6qigKgEamHDJrKdcUnVxsFOBOy4AzfkJCQtEgvEakZ__vujGUJOgZ0DxOJiwRgwyTLO-4bF6R4ZgEzjKIuF3CeDXo36-SE5CmHFGONcJAPyNMeiNVjQ27LCpjR0YZ5xg4Fa5-nEbeo1vtE5KtOU1ZJO1-51q7aNakpXBeosvfeuVhV-fXyOyy2j29APj8mBVeuAJz91SB6nlw-T62h2d3UzGc8iE0PSRHqU6YIXUmOqmAJpbZFBhkZrlFakSmcAooiZ0TYxcmQAbMozAzwVorthFA_J2S639u6lxdDkK9f6qluZc8GTDh8x2blg5zLeheDR5rUvN8q_58Dy_oX5nxd2DN8xofNWS_S_yf9D38NNc40</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dogkas, E.</creator><creator>Lytras, I.</creator><creator>Koutmos, P.</creator><creator>Kontogouris, G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</title><author>Dogkas, E. ; Lytras, I. ; Koutmos, P. ; Kontogouris, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b98bd2d5be7a0a15ffd818ecbbe5f47ab8114d30cbf6c59c11f728c1274422493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heating</topic><topic>High temperature</topic><topic>Iterative methods</topic><topic>Jet flow</topic><topic>Laminar flow</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Premixed flames</topic><topic>Propane</topic><topic>Reacting flow</topic><topic>Turbulent flames</topic><topic>Two dimensional flow</topic><topic>Two dimensional jets</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogkas, E.</creatorcontrib><creatorcontrib>Lytras, I.</creatorcontrib><creatorcontrib>Koutmos, P.</creatorcontrib><creatorcontrib>Kontogouris, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogkas, E.</au><au>Lytras, I.</au><au>Koutmos, P.</au><au>Kontogouris, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2020</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>23</spage><epage>35</epage><pages>23-35</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>This paper describes the development of two simplified reduced kinetic models for high-temperature oxidation of propane, which can be incorporated into complex turbulent flame simulations. Equilibrium, 0D or 1D propagating premixed flames and 2D co-flowing laminar jet flames, with or without preheating, attached or lifted, are computed during the iterative optimization process. Accompanying computations with the USC-II mechanism, as well as available experimental data are exploited for validation. Comparisons demonstrate that these reduced kinetic models ensure satisfactory agreement with data over the investigated parameter space.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508220010037</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2020, Vol.56 (1), p.23-35
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2426811905
source SpringerLink Journals - AutoHoldings
subjects Aerodynamics
Classical and Continuum Physics
Classical Mechanics
Computational fluid dynamics
Computer simulation
Control
Dynamical Systems
Engineering
Heating
High temperature
Iterative methods
Jet flow
Laminar flow
Optimization
Oxidation
Physical Chemistry
Physics
Physics and Astronomy
Premixed flames
Propane
Reacting flow
Turbulent flames
Two dimensional flow
Two dimensional jets
Vibration
title Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Kinetic%20Schemes%20for%20Complex%20Reacting%20Flow%20Computations%20of%20Propane%E2%80%93Air%20Combustion&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Dogkas,%20E.&rft.date=2020&rft.volume=56&rft.issue=1&rft.spage=23&rft.epage=35&rft.pages=23-35&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508220010037&rft_dat=%3Cproquest_cross%3E2426811905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426811905&rft_id=info:pmid/&rfr_iscdi=true