Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network
Predicting urban traffic volume is of great significance to traffic management and urban construction. An accurate prediction model can help drivers optimize driving routes, allocate resources reasonably and reduce urban traffic congestion. Most of the existing studies do not consider the complex no...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2020-08, Vol.25 (4), p.1405-1417 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1417 |
---|---|
container_issue | 4 |
container_start_page | 1405 |
container_title | Mobile networks and applications |
container_volume | 25 |
creator | Kuang, Li Hua, Chunbo Wu, Jiagui Yin, Yuyu Gao, Honghao |
description | Predicting urban traffic volume is of great significance to traffic management and urban construction. An accurate prediction model can help drivers optimize driving routes, allocate resources reasonably and reduce urban traffic congestion. Most of the existing studies do not consider the complex nonlinear spatio-temporal relationship. In the spatial dimension, they do not consider the impact of regional semantics and regional interactions. In the temporal dimension, they ignore the impact of long-term historical information and key time points. Aiming at the complexity of traffic data, in this paper, we design a ResNet-TCN model to predict the urban traffic volume. Firstly, we construct and extract features from the vehicle GPS tracking and external information, such as velocity, time, location and weather. Then, we obtain regional semantic information by the ResNet model and combine the weights of the regional division with the average vehicle velocity into a two-channel matrix. We extract the key features of the matrix sequence and predict the velocity by the TCN model. Finally, we estimate the traffic volume through a traffic volume inference model in the traffic field. We conduct a large number of experiments on the actual dataset of Chengdu and compare our model with the existing models. The experimental results show that our method has better performance on prediction accuracy. |
doi_str_mv | 10.1007/s11036-019-01458-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426699969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426699969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-747a1f2fa93299ee934b52548783cf35686acdcf1dabb0f46c44ac41168d32fc3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhQdRsFZfwFXAdTT_kyy1ahWqFlrFXchkEpnaNjWZUfr2po7gzsXl3gvnOxxOUZxidI4RKi8SxogKiLDKw7iEYq8YYF4SKDGn-_mmkkIm1OthcZTSAiHEuWSDws-j8b6x4CUsu5UD0-jqxrZNWIMrk1wN8vHQLdsGzkIXrUtgPJ2BDC2cbUPcgmvTGlBtwdytNiGaJRiF9Wf22lnk79G1XyG-HxcH3iyTO_ndw-L59mY-uoOTp_H96HICLcWqhSUrDfbEG0WJUs4pyipOOJOlpNZTLqQwtrYe16aqkGfCMmYsw1jImhJv6bA46303MXx0LrV6kWPnIEkTRoRQSgmVVaRX2RhSis7rTWxWJm41RnrXp-771LlP_dOnFhmiPZSyeP3m4p_1P9Q3yu95IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426699969</pqid></control><display><type>article</type><title>Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network</title><source>Springer Nature - Complete Springer Journals</source><creator>Kuang, Li ; Hua, Chunbo ; Wu, Jiagui ; Yin, Yuyu ; Gao, Honghao</creator><creatorcontrib>Kuang, Li ; Hua, Chunbo ; Wu, Jiagui ; Yin, Yuyu ; Gao, Honghao</creatorcontrib><description>Predicting urban traffic volume is of great significance to traffic management and urban construction. An accurate prediction model can help drivers optimize driving routes, allocate resources reasonably and reduce urban traffic congestion. Most of the existing studies do not consider the complex nonlinear spatio-temporal relationship. In the spatial dimension, they do not consider the impact of regional semantics and regional interactions. In the temporal dimension, they ignore the impact of long-term historical information and key time points. Aiming at the complexity of traffic data, in this paper, we design a ResNet-TCN model to predict the urban traffic volume. Firstly, we construct and extract features from the vehicle GPS tracking and external information, such as velocity, time, location and weather. Then, we obtain regional semantic information by the ResNet model and combine the weights of the regional division with the average vehicle velocity into a two-channel matrix. We extract the key features of the matrix sequence and predict the velocity by the TCN model. Finally, we estimate the traffic volume through a traffic volume inference model in the traffic field. We conduct a large number of experiments on the actual dataset of Chengdu and compare our model with the existing models. The experimental results show that our method has better performance on prediction accuracy.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-019-01458-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Complexity ; Computer Communication Networks ; Electrical Engineering ; Engineering ; Feature extraction ; Global positioning systems ; GPS ; IT in Business ; Networks ; Prediction models ; Predictions ; Semantics ; Traffic congestion ; Traffic information ; Traffic management ; Traffic models ; Traffic volume ; Weather</subject><ispartof>Mobile networks and applications, 2020-08, Vol.25 (4), p.1405-1417</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-747a1f2fa93299ee934b52548783cf35686acdcf1dabb0f46c44ac41168d32fc3</citedby><cites>FETCH-LOGICAL-c319t-747a1f2fa93299ee934b52548783cf35686acdcf1dabb0f46c44ac41168d32fc3</cites><orcidid>0000-0001-7565-4111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-019-01458-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-019-01458-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kuang, Li</creatorcontrib><creatorcontrib>Hua, Chunbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><creatorcontrib>Yin, Yuyu</creatorcontrib><creatorcontrib>Gao, Honghao</creatorcontrib><title>Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Predicting urban traffic volume is of great significance to traffic management and urban construction. An accurate prediction model can help drivers optimize driving routes, allocate resources reasonably and reduce urban traffic congestion. Most of the existing studies do not consider the complex nonlinear spatio-temporal relationship. In the spatial dimension, they do not consider the impact of regional semantics and regional interactions. In the temporal dimension, they ignore the impact of long-term historical information and key time points. Aiming at the complexity of traffic data, in this paper, we design a ResNet-TCN model to predict the urban traffic volume. Firstly, we construct and extract features from the vehicle GPS tracking and external information, such as velocity, time, location and weather. Then, we obtain regional semantic information by the ResNet model and combine the weights of the regional division with the average vehicle velocity into a two-channel matrix. We extract the key features of the matrix sequence and predict the velocity by the TCN model. Finally, we estimate the traffic volume through a traffic volume inference model in the traffic field. We conduct a large number of experiments on the actual dataset of Chengdu and compare our model with the existing models. The experimental results show that our method has better performance on prediction accuracy.</description><subject>Communications Engineering</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>IT in Business</subject><subject>Networks</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Semantics</subject><subject>Traffic congestion</subject><subject>Traffic information</subject><subject>Traffic management</subject><subject>Traffic models</subject><subject>Traffic volume</subject><subject>Weather</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhQdRsFZfwFXAdTT_kyy1ahWqFlrFXchkEpnaNjWZUfr2po7gzsXl3gvnOxxOUZxidI4RKi8SxogKiLDKw7iEYq8YYF4SKDGn-_mmkkIm1OthcZTSAiHEuWSDws-j8b6x4CUsu5UD0-jqxrZNWIMrk1wN8vHQLdsGzkIXrUtgPJ2BDC2cbUPcgmvTGlBtwdytNiGaJRiF9Wf22lnk79G1XyG-HxcH3iyTO_ndw-L59mY-uoOTp_H96HICLcWqhSUrDfbEG0WJUs4pyipOOJOlpNZTLqQwtrYe16aqkGfCMmYsw1jImhJv6bA46303MXx0LrV6kWPnIEkTRoRQSgmVVaRX2RhSis7rTWxWJm41RnrXp-771LlP_dOnFhmiPZSyeP3m4p_1P9Q3yu95IQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kuang, Li</creator><creator>Hua, Chunbo</creator><creator>Wu, Jiagui</creator><creator>Yin, Yuyu</creator><creator>Gao, Honghao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7565-4111</orcidid></search><sort><creationdate>20200801</creationdate><title>Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network</title><author>Kuang, Li ; Hua, Chunbo ; Wu, Jiagui ; Yin, Yuyu ; Gao, Honghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-747a1f2fa93299ee934b52548783cf35686acdcf1dabb0f46c44ac41168d32fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communications Engineering</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>IT in Business</topic><topic>Networks</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Semantics</topic><topic>Traffic congestion</topic><topic>Traffic information</topic><topic>Traffic management</topic><topic>Traffic models</topic><topic>Traffic volume</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Li</creatorcontrib><creatorcontrib>Hua, Chunbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><creatorcontrib>Yin, Yuyu</creatorcontrib><creatorcontrib>Gao, Honghao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Li</au><au>Hua, Chunbo</au><au>Wu, Jiagui</au><au>Yin, Yuyu</au><au>Gao, Honghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>25</volume><issue>4</issue><spage>1405</spage><epage>1417</epage><pages>1405-1417</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Predicting urban traffic volume is of great significance to traffic management and urban construction. An accurate prediction model can help drivers optimize driving routes, allocate resources reasonably and reduce urban traffic congestion. Most of the existing studies do not consider the complex nonlinear spatio-temporal relationship. In the spatial dimension, they do not consider the impact of regional semantics and regional interactions. In the temporal dimension, they ignore the impact of long-term historical information and key time points. Aiming at the complexity of traffic data, in this paper, we design a ResNet-TCN model to predict the urban traffic volume. Firstly, we construct and extract features from the vehicle GPS tracking and external information, such as velocity, time, location and weather. Then, we obtain regional semantic information by the ResNet model and combine the weights of the regional division with the average vehicle velocity into a two-channel matrix. We extract the key features of the matrix sequence and predict the velocity by the TCN model. Finally, we estimate the traffic volume through a traffic volume inference model in the traffic field. We conduct a large number of experiments on the actual dataset of Chengdu and compare our model with the existing models. The experimental results show that our method has better performance on prediction accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-019-01458-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7565-4111</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2020-08, Vol.25 (4), p.1405-1417 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_2426699969 |
source | Springer Nature - Complete Springer Journals |
subjects | Communications Engineering Complexity Computer Communication Networks Electrical Engineering Engineering Feature extraction Global positioning systems GPS IT in Business Networks Prediction models Predictions Semantics Traffic congestion Traffic information Traffic management Traffic models Traffic volume Weather |
title | Traffic Volume Prediction Based on Multi-Sources GPS Trajectory Data by Temporal Convolutional Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20Volume%20Prediction%20Based%20on%20Multi-Sources%20GPS%20Trajectory%20Data%20by%20Temporal%20Convolutional%20Network&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Kuang,%20Li&rft.date=2020-08-01&rft.volume=25&rft.issue=4&rft.spage=1405&rft.epage=1417&rft.pages=1405-1417&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-019-01458-6&rft_dat=%3Cproquest_cross%3E2426699969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426699969&rft_id=info:pmid/&rfr_iscdi=true |