Probabilistic Approach to Physical Object Disentangling

Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-10, Vol.5 (4), p.5510-5517
Hauptverfasser: Pajarinen, Joni, Arenz, Oleg, Peters, Jan, Neumann, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5517
container_issue 4
container_start_page 5510
container_title IEEE robotics and automation letters
container_volume 5
creator Pajarinen, Joni
Arenz, Oleg
Peters, Jan
Neumann, Gerhard
description Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.
doi_str_mv 10.1109/LRA.2020.3006789
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2426666444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9131849</ieee_id><sourcerecordid>2426666444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpcFz1snmWw-jqVqFQotoueQzWbblHW3braH_vemtIhzmYF5b97wI-SewpRS0E_Lj9mUAYMpAgip9BUZMZQyRynE9b_5lkxi3AEALZhEXYyIXPddacvQhDgEl832-76zbpsNXbbeHmNwtslW5c67IXsO0beDbTdNaDd35Ka2TfSTSx-Tr9eXz_lbvlwt3uezZe4QccgrXkApVaW0545WomIOBLMMXOVQ8EKytBJMKQXOV6wQKKEuta-hRI6-wDF5PN9Nf_0cfBzMrjv0bYo0jDORinOeVHBWub6Lsfe12ffh2_ZHQ8GcCJlEyJwImQuhZHk4W4L3_k-uKVLFNf4CXJpf_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426666444</pqid></control><display><type>article</type><title>Probabilistic Approach to Physical Object Disentangling</title><source>IEEE Electronic Library (IEL)</source><creator>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</creator><creatorcontrib>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</creatorcontrib><description>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3006789</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous systems ; Barriers ; Collision avoidance ; Computer simulation ; intelligent robots ; Occlusion ; Path planning ; Planning ; probabilistic computing ; Probabilistic logic ; Robot sensing systems ; Robots ; Statistical analysis ; Task analysis ; waste recovery</subject><ispartof>IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5510-5517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</citedby><cites>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</cites><orcidid>0000-0003-4469-8191 ; 0000-0002-5266-8091 ; 0000-0002-9470-2833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9131849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9131849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pajarinen, Joni</creatorcontrib><creatorcontrib>Arenz, Oleg</creatorcontrib><creatorcontrib>Peters, Jan</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><title>Probabilistic Approach to Physical Object Disentangling</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</description><subject>Algorithms</subject><subject>Autonomous systems</subject><subject>Barriers</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>intelligent robots</subject><subject>Occlusion</subject><subject>Path planning</subject><subject>Planning</subject><subject>probabilistic computing</subject><subject>Probabilistic logic</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>waste recovery</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpcFz1snmWw-jqVqFQotoueQzWbblHW3braH_vemtIhzmYF5b97wI-SewpRS0E_Lj9mUAYMpAgip9BUZMZQyRynE9b_5lkxi3AEALZhEXYyIXPddacvQhDgEl832-76zbpsNXbbeHmNwtslW5c67IXsO0beDbTdNaDd35Ka2TfSTSx-Tr9eXz_lbvlwt3uezZe4QccgrXkApVaW0545WomIOBLMMXOVQ8EKytBJMKQXOV6wQKKEuta-hRI6-wDF5PN9Nf_0cfBzMrjv0bYo0jDORinOeVHBWub6Lsfe12ffh2_ZHQ8GcCJlEyJwImQuhZHk4W4L3_k-uKVLFNf4CXJpf_Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pajarinen, Joni</creator><creator>Arenz, Oleg</creator><creator>Peters, Jan</creator><creator>Neumann, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4469-8191</orcidid><orcidid>https://orcid.org/0000-0002-5266-8091</orcidid><orcidid>https://orcid.org/0000-0002-9470-2833</orcidid></search><sort><creationdate>20201001</creationdate><title>Probabilistic Approach to Physical Object Disentangling</title><author>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Autonomous systems</topic><topic>Barriers</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>intelligent robots</topic><topic>Occlusion</topic><topic>Path planning</topic><topic>Planning</topic><topic>probabilistic computing</topic><topic>Probabilistic logic</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>waste recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajarinen, Joni</creatorcontrib><creatorcontrib>Arenz, Oleg</creatorcontrib><creatorcontrib>Peters, Jan</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pajarinen, Joni</au><au>Arenz, Oleg</au><au>Peters, Jan</au><au>Neumann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Approach to Physical Object Disentangling</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>5510</spage><epage>5517</epage><pages>5510-5517</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3006789</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4469-8191</orcidid><orcidid>https://orcid.org/0000-0002-5266-8091</orcidid><orcidid>https://orcid.org/0000-0002-9470-2833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5510-5517
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2426666444
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous systems
Barriers
Collision avoidance
Computer simulation
intelligent robots
Occlusion
Path planning
Planning
probabilistic computing
Probabilistic logic
Robot sensing systems
Robots
Statistical analysis
Task analysis
waste recovery
title Probabilistic Approach to Physical Object Disentangling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Approach%20to%20Physical%20Object%20Disentangling&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Pajarinen,%20Joni&rft.date=2020-10-01&rft.volume=5&rft.issue=4&rft.spage=5510&rft.epage=5517&rft.pages=5510-5517&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3006789&rft_dat=%3Cproquest_RIE%3E2426666444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426666444&rft_id=info:pmid/&rft_ieee_id=9131849&rfr_iscdi=true