Probabilistic Approach to Physical Object Disentangling
Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene du...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-10, Vol.5 (4), p.5510-5517 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5517 |
---|---|
container_issue | 4 |
container_start_page | 5510 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Pajarinen, Joni Arenz, Oleg Peters, Jan Neumann, Gerhard |
description | Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods. |
doi_str_mv | 10.1109/LRA.2020.3006789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2426666444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9131849</ieee_id><sourcerecordid>2426666444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpcFz1snmWw-jqVqFQotoueQzWbblHW3braH_vemtIhzmYF5b97wI-SewpRS0E_Lj9mUAYMpAgip9BUZMZQyRynE9b_5lkxi3AEALZhEXYyIXPddacvQhDgEl832-76zbpsNXbbeHmNwtslW5c67IXsO0beDbTdNaDd35Ka2TfSTSx-Tr9eXz_lbvlwt3uezZe4QccgrXkApVaW0545WomIOBLMMXOVQ8EKytBJMKQXOV6wQKKEuta-hRI6-wDF5PN9Nf_0cfBzMrjv0bYo0jDORinOeVHBWub6Lsfe12ffh2_ZHQ8GcCJlEyJwImQuhZHk4W4L3_k-uKVLFNf4CXJpf_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426666444</pqid></control><display><type>article</type><title>Probabilistic Approach to Physical Object Disentangling</title><source>IEEE Electronic Library (IEL)</source><creator>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</creator><creatorcontrib>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</creatorcontrib><description>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3006789</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous systems ; Barriers ; Collision avoidance ; Computer simulation ; intelligent robots ; Occlusion ; Path planning ; Planning ; probabilistic computing ; Probabilistic logic ; Robot sensing systems ; Robots ; Statistical analysis ; Task analysis ; waste recovery</subject><ispartof>IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5510-5517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</citedby><cites>FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</cites><orcidid>0000-0003-4469-8191 ; 0000-0002-5266-8091 ; 0000-0002-9470-2833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9131849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9131849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pajarinen, Joni</creatorcontrib><creatorcontrib>Arenz, Oleg</creatorcontrib><creatorcontrib>Peters, Jan</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><title>Probabilistic Approach to Physical Object Disentangling</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</description><subject>Algorithms</subject><subject>Autonomous systems</subject><subject>Barriers</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>intelligent robots</subject><subject>Occlusion</subject><subject>Path planning</subject><subject>Planning</subject><subject>probabilistic computing</subject><subject>Probabilistic logic</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>waste recovery</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpcFz1snmWw-jqVqFQotoueQzWbblHW3braH_vemtIhzmYF5b97wI-SewpRS0E_Lj9mUAYMpAgip9BUZMZQyRynE9b_5lkxi3AEALZhEXYyIXPddacvQhDgEl832-76zbpsNXbbeHmNwtslW5c67IXsO0beDbTdNaDd35Ka2TfSTSx-Tr9eXz_lbvlwt3uezZe4QccgrXkApVaW0545WomIOBLMMXOVQ8EKytBJMKQXOV6wQKKEuta-hRI6-wDF5PN9Nf_0cfBzMrjv0bYo0jDORinOeVHBWub6Lsfe12ffh2_ZHQ8GcCJlEyJwImQuhZHk4W4L3_k-uKVLFNf4CXJpf_Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pajarinen, Joni</creator><creator>Arenz, Oleg</creator><creator>Peters, Jan</creator><creator>Neumann, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4469-8191</orcidid><orcidid>https://orcid.org/0000-0002-5266-8091</orcidid><orcidid>https://orcid.org/0000-0002-9470-2833</orcidid></search><sort><creationdate>20201001</creationdate><title>Probabilistic Approach to Physical Object Disentangling</title><author>Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d450b78d89e4c1d6d2c062a20cdc364572d89628880ced256370fb9ef0b343e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Autonomous systems</topic><topic>Barriers</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>intelligent robots</topic><topic>Occlusion</topic><topic>Path planning</topic><topic>Planning</topic><topic>probabilistic computing</topic><topic>Probabilistic logic</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>waste recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajarinen, Joni</creatorcontrib><creatorcontrib>Arenz, Oleg</creatorcontrib><creatorcontrib>Peters, Jan</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pajarinen, Joni</au><au>Arenz, Oleg</au><au>Peters, Jan</au><au>Neumann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Approach to Physical Object Disentangling</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>5510</spage><epage>5517</epage><pages>5510-5517</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3006789</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4469-8191</orcidid><orcidid>https://orcid.org/0000-0002-5266-8091</orcidid><orcidid>https://orcid.org/0000-0002-9470-2833</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-10, Vol.5 (4), p.5510-5517 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2426666444 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous systems Barriers Collision avoidance Computer simulation intelligent robots Occlusion Path planning Planning probabilistic computing Probabilistic logic Robot sensing systems Robots Statistical analysis Task analysis waste recovery |
title | Probabilistic Approach to Physical Object Disentangling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Approach%20to%20Physical%20Object%20Disentangling&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Pajarinen,%20Joni&rft.date=2020-10-01&rft.volume=5&rft.issue=4&rft.spage=5510&rft.epage=5517&rft.pages=5510-5517&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3006789&rft_dat=%3Cproquest_RIE%3E2426666444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426666444&rft_id=info:pmid/&rft_ieee_id=9131849&rfr_iscdi=true |