Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis

In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2020-08, Vol.17 (8), p.1386-1390
Hauptverfasser: Gargees, Rasha S., Scott, Grant J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 8
container_start_page 1386
container_title IEEE geoscience and remote sensing letters
container_volume 17
creator Gargees, Rasha S.
Scott, Grant J.
description In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.
doi_str_mv 10.1109/LGRS.2019.2948799
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2426664132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8887293</ieee_id><sourcerecordid>2426664132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmyZt8jiqm4OCsCn4FtL2ZnRs7UxaYf_elg2f7uFyzuHwEfIIbAbA9Eu-XG9mnIGecS1UqvUVmYCUKmIyhetRCxlJrb5vyV0IO8a4UCqdkMUr4pEu0Ha9R5rt-9Chr5stda2nazy0HdINNmF8rQ52i_5Ec9tUNGt_0dN5Y_enUId7cuPsPuDD5U7J1-LtM3uP8o_lKpvnUcl13EUVF9wVWiVFapkThUqAK4YsTl2hOJTaihgqXemESwXgHE9ROkQFkldFWcZT8nzuPfr2p8fQmV3b-2FEMEN1kiQCYj644OwqfRuCR2eOvj5YfzLAzIjLjLjMiMtccA2Zp3OmRsR_vxogDcvjPyCyZas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426664132</pqid></control><display><type>article</type><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gargees, Rasha S. ; Scott, Grant J.</creator><creatorcontrib>Gargees, Rasha S. ; Scott, Grant J.</creatorcontrib><description>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2948799</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cluster analysis ; Clustering ; Data acquisition ; Data models ; Deep learning ; Ecological aggregations ; Feature extraction ; fuzzy clustering ; Geospatial analysis ; geospatial information ; Image acquisition ; Image resolution ; Imagery ; Land cover ; large-scale data ; Machine learning ; Mental task performance ; Neural networks ; Numerical analysis ; Principal component analysis ; Remote sensing ; Satellite imagery ; Spaceborne remote sensing ; Spatial analysis ; Training ; Transfer learning ; Visual system ; Visualization</subject><ispartof>IEEE geoscience and remote sensing letters, 2020-08, Vol.17 (8), p.1386-1390</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</citedby><cites>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</cites><orcidid>0000-0001-5870-9387 ; 0000-0003-3087-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8887293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8887293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gargees, Rasha S.</creatorcontrib><creatorcontrib>Scott, Grant J.</creatorcontrib><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Ecological aggregations</subject><subject>Feature extraction</subject><subject>fuzzy clustering</subject><subject>Geospatial analysis</subject><subject>geospatial information</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Land cover</subject><subject>large-scale data</subject><subject>Machine learning</subject><subject>Mental task performance</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Principal component analysis</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Spaceborne remote sensing</subject><subject>Spatial analysis</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Visual system</subject><subject>Visualization</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmyZt8jiqm4OCsCn4FtL2ZnRs7UxaYf_elg2f7uFyzuHwEfIIbAbA9Eu-XG9mnIGecS1UqvUVmYCUKmIyhetRCxlJrb5vyV0IO8a4UCqdkMUr4pEu0Ha9R5rt-9Chr5stda2nazy0HdINNmF8rQ52i_5Ec9tUNGt_0dN5Y_enUId7cuPsPuDD5U7J1-LtM3uP8o_lKpvnUcl13EUVF9wVWiVFapkThUqAK4YsTl2hOJTaihgqXemESwXgHE9ROkQFkldFWcZT8nzuPfr2p8fQmV3b-2FEMEN1kiQCYj644OwqfRuCR2eOvj5YfzLAzIjLjLjMiMtccA2Zp3OmRsR_vxogDcvjPyCyZas</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Gargees, Rasha S.</creator><creator>Scott, Grant J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5870-9387</orcidid><orcidid>https://orcid.org/0000-0003-3087-2910</orcidid></search><sort><creationdate>20200801</creationdate><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><author>Gargees, Rasha S. ; Scott, Grant J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Ecological aggregations</topic><topic>Feature extraction</topic><topic>fuzzy clustering</topic><topic>Geospatial analysis</topic><topic>geospatial information</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Land cover</topic><topic>large-scale data</topic><topic>Machine learning</topic><topic>Mental task performance</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Principal component analysis</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Spaceborne remote sensing</topic><topic>Spatial analysis</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Visual system</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargees, Rasha S.</creatorcontrib><creatorcontrib>Scott, Grant J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gargees, Rasha S.</au><au>Scott, Grant J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>17</volume><issue>8</issue><spage>1386</spage><epage>1390</epage><pages>1386-1390</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2948799</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5870-9387</orcidid><orcidid>https://orcid.org/0000-0003-3087-2910</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2020-08, Vol.17 (8), p.1386-1390
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2426664132
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cluster analysis
Clustering
Data acquisition
Data models
Deep learning
Ecological aggregations
Feature extraction
fuzzy clustering
Geospatial analysis
geospatial information
Image acquisition
Image resolution
Imagery
Land cover
large-scale data
Machine learning
Mental task performance
Neural networks
Numerical analysis
Principal component analysis
Remote sensing
Satellite imagery
Spaceborne remote sensing
Spatial analysis
Training
Transfer learning
Visual system
Visualization
title Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Clustering%20for%20Remote%20Sensing%20Imagery%20Land%20Cover%20Analysis&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gargees,%20Rasha%20S.&rft.date=2020-08-01&rft.volume=17&rft.issue=8&rft.spage=1386&rft.epage=1390&rft.pages=1386-1390&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2948799&rft_dat=%3Cproquest_RIE%3E2426664132%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426664132&rft_id=info:pmid/&rft_ieee_id=8887293&rfr_iscdi=true