Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis
In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditi...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2020-08, Vol.17 (8), p.1386-1390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1390 |
---|---|
container_issue | 8 |
container_start_page | 1386 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 17 |
creator | Gargees, Rasha S. Scott, Grant J. |
description | In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth. |
doi_str_mv | 10.1109/LGRS.2019.2948799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2426664132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8887293</ieee_id><sourcerecordid>2426664132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmyZt8jiqm4OCsCn4FtL2ZnRs7UxaYf_elg2f7uFyzuHwEfIIbAbA9Eu-XG9mnIGecS1UqvUVmYCUKmIyhetRCxlJrb5vyV0IO8a4UCqdkMUr4pEu0Ha9R5rt-9Chr5stda2nazy0HdINNmF8rQ52i_5Ec9tUNGt_0dN5Y_enUId7cuPsPuDD5U7J1-LtM3uP8o_lKpvnUcl13EUVF9wVWiVFapkThUqAK4YsTl2hOJTaihgqXemESwXgHE9ROkQFkldFWcZT8nzuPfr2p8fQmV3b-2FEMEN1kiQCYj644OwqfRuCR2eOvj5YfzLAzIjLjLjMiMtccA2Zp3OmRsR_vxogDcvjPyCyZas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426664132</pqid></control><display><type>article</type><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gargees, Rasha S. ; Scott, Grant J.</creator><creatorcontrib>Gargees, Rasha S. ; Scott, Grant J.</creatorcontrib><description>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2948799</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cluster analysis ; Clustering ; Data acquisition ; Data models ; Deep learning ; Ecological aggregations ; Feature extraction ; fuzzy clustering ; Geospatial analysis ; geospatial information ; Image acquisition ; Image resolution ; Imagery ; Land cover ; large-scale data ; Machine learning ; Mental task performance ; Neural networks ; Numerical analysis ; Principal component analysis ; Remote sensing ; Satellite imagery ; Spaceborne remote sensing ; Spatial analysis ; Training ; Transfer learning ; Visual system ; Visualization</subject><ispartof>IEEE geoscience and remote sensing letters, 2020-08, Vol.17 (8), p.1386-1390</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</citedby><cites>FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</cites><orcidid>0000-0001-5870-9387 ; 0000-0003-3087-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8887293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8887293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gargees, Rasha S.</creatorcontrib><creatorcontrib>Scott, Grant J.</creatorcontrib><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Ecological aggregations</subject><subject>Feature extraction</subject><subject>fuzzy clustering</subject><subject>Geospatial analysis</subject><subject>geospatial information</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Land cover</subject><subject>large-scale data</subject><subject>Machine learning</subject><subject>Mental task performance</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Principal component analysis</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Spaceborne remote sensing</subject><subject>Spatial analysis</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Visual system</subject><subject>Visualization</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmyZt8jiqm4OCsCn4FtL2ZnRs7UxaYf_elg2f7uFyzuHwEfIIbAbA9Eu-XG9mnIGecS1UqvUVmYCUKmIyhetRCxlJrb5vyV0IO8a4UCqdkMUr4pEu0Ha9R5rt-9Chr5stda2nazy0HdINNmF8rQ52i_5Ec9tUNGt_0dN5Y_enUId7cuPsPuDD5U7J1-LtM3uP8o_lKpvnUcl13EUVF9wVWiVFapkThUqAK4YsTl2hOJTaihgqXemESwXgHE9ROkQFkldFWcZT8nzuPfr2p8fQmV3b-2FEMEN1kiQCYj644OwqfRuCR2eOvj5YfzLAzIjLjLjMiMtccA2Zp3OmRsR_vxogDcvjPyCyZas</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Gargees, Rasha S.</creator><creator>Scott, Grant J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5870-9387</orcidid><orcidid>https://orcid.org/0000-0003-3087-2910</orcidid></search><sort><creationdate>20200801</creationdate><title>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</title><author>Gargees, Rasha S. ; Scott, Grant J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d242fb986b7a0f4b861280e037fb821c9a431d9d9625811ff27e5fee8152dbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Ecological aggregations</topic><topic>Feature extraction</topic><topic>fuzzy clustering</topic><topic>Geospatial analysis</topic><topic>geospatial information</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Land cover</topic><topic>large-scale data</topic><topic>Machine learning</topic><topic>Mental task performance</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Principal component analysis</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Spaceborne remote sensing</topic><topic>Spatial analysis</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Visual system</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargees, Rasha S.</creatorcontrib><creatorcontrib>Scott, Grant J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gargees, Rasha S.</au><au>Scott, Grant J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>17</volume><issue>8</issue><spage>1386</spage><epage>1390</epage><pages>1386-1390</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we propose a chip-based technique for large-scale, automatic land cover clustering of high-resolution remote sensing imagery (HR-RSI) using deep visual features from a deep convolutional neural network (DCNN) along with the fuzzy c-means algorithm. The proposed method, unlike traditional methods, facilitates utilizing transfer learning techniques for deep neural models that are fined-tuned to satellite imagery for feature extraction. Then, a large conterminous region of imagery is acquired from HR-RSI data providers and scanned to extract visual features utilizing the transfer learned model. Broad-area thematic and contextual understanding of the geographic land cover is efficiently achieved using feature reduction, chip-based clustering analysis, and geospatial rendering of the clusters. We explore a variety of fuzzy clusterings and their resulting utility for spatial analysis. The spatial densities of the clusters, numerical analysis, and geographic aggregations show that our proposed approach is effective in examining the land cover of the earth.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2948799</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5870-9387</orcidid><orcidid>https://orcid.org/0000-0003-3087-2910</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2020-08, Vol.17 (8), p.1386-1390 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2426664132 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Cluster analysis Clustering Data acquisition Data models Deep learning Ecological aggregations Feature extraction fuzzy clustering Geospatial analysis geospatial information Image acquisition Image resolution Imagery Land cover large-scale data Machine learning Mental task performance Neural networks Numerical analysis Principal component analysis Remote sensing Satellite imagery Spaceborne remote sensing Spatial analysis Training Transfer learning Visual system Visualization |
title | Deep Feature Clustering for Remote Sensing Imagery Land Cover Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Clustering%20for%20Remote%20Sensing%20Imagery%20Land%20Cover%20Analysis&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Gargees,%20Rasha%20S.&rft.date=2020-08-01&rft.volume=17&rft.issue=8&rft.spage=1386&rft.epage=1390&rft.pages=1386-1390&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2948799&rft_dat=%3Cproquest_RIE%3E2426664132%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426664132&rft_id=info:pmid/&rft_ieee_id=8887293&rfr_iscdi=true |