High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation
In a continuous-variable quantum key distribution (CV-QKD) system, the computation speed of the post-processing procedure, including information reconciliation (IR) and privacy amplification (PA), inevitably affects the practical secret key rate. IR and PA can be implemented in parallel using low-de...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2020-08, Vol.38 (15), p.3935-3941 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3941 |
---|---|
container_issue | 15 |
container_start_page | 3935 |
container_title | Journal of lightwave technology |
container_volume | 38 |
creator | Yang, Shen-Shen Lu, Zhen-Guo Li, Yong-Min |
description | In a continuous-variable quantum key distribution (CV-QKD) system, the computation speed of the post-processing procedure, including information reconciliation (IR) and privacy amplification (PA), inevitably affects the practical secret key rate. IR and PA can be implemented in parallel using low-density parity-check (LDPC) codes and hash functions, respectively. We achieve high-speed hardware-accelerated post-processing procedure for Gaussian symbols on a field-programmable gate array (FPGA) by taking advantage of its superior parallel processing ability. To this end, the sum-product algorithm decoders and a modified LDPC codes construction algorithm adapted to FPGA's characteristics are developed and employed. Two different structures including multiplexing and non-multiplexing are designed to achieve the trade-off between the speed and area of FPGAs, so that an optimal scheme can be adopted according to the requirement of a practical system. Simulation results show that the maximum throughput can reach 100 M symbols/s. We verified the correctness of the post-processing procedures when implemented on the Xilinx VC709 evaluation board, which is populated with the Virtex-7 XC7VX690T FPGA and provided some possible solutions to obtain better performance when more advanced FPGAs are available. The scheme can be applied readily for real-time key extraction and effectively reduce power consumption of the CV-QKD system. |
doi_str_mv | 10.1109/JLT.2020.2985408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2426662142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9057665</ieee_id><sourcerecordid>2426662142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1fe6a5b7e68440be2cf6b976a2cd363d95804afb3d9f259a193d474b5595ff3f3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvBc2a-2xzndB86cOL0GtI2mRlrOpP0sP_ejomn94H3-YAfALcYjTBG8uFluR4RRNCIyIIzVJyBAea8gIRgeg4GKKcUFjlhl-Aqxi1CmLEiH4DN3G2-4cfemDpbtTHBVWgrE6Pzm8z5bNL65HzXdhF-6eB0uTPZe6d96prs1RyyJxdTcGWXXOuzRx37ll5MV7Nxtmj2O9MYn_TxeQ0urN5Fc_N3h-Bz-ryezOHybbaYjJewIhIniK0Rmpe5EQVjqDSksqKUudCkqqmgteQFYtqWvbKES40lrVnOSs4lt5ZaOgT3p959aH86E5Patl3w_aQijAghCGakd6GTqwptjMFYtQ-u0eGgMFJHnKrHqY441R_OPnJ3ijhjzL9dIp4Lwekvq09xSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426662142</pqid></control><display><type>article</type><title>High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Shen-Shen ; Lu, Zhen-Guo ; Li, Yong-Min</creator><creatorcontrib>Yang, Shen-Shen ; Lu, Zhen-Guo ; Li, Yong-Min</creatorcontrib><description>In a continuous-variable quantum key distribution (CV-QKD) system, the computation speed of the post-processing procedure, including information reconciliation (IR) and privacy amplification (PA), inevitably affects the practical secret key rate. IR and PA can be implemented in parallel using low-density parity-check (LDPC) codes and hash functions, respectively. We achieve high-speed hardware-accelerated post-processing procedure for Gaussian symbols on a field-programmable gate array (FPGA) by taking advantage of its superior parallel processing ability. To this end, the sum-product algorithm decoders and a modified LDPC codes construction algorithm adapted to FPGA's characteristics are developed and employed. Two different structures including multiplexing and non-multiplexing are designed to achieve the trade-off between the speed and area of FPGAs, so that an optimal scheme can be adopted according to the requirement of a practical system. Simulation results show that the maximum throughput can reach 100 M symbols/s. We verified the correctness of the post-processing procedures when implemented on the Xilinx VC709 evaluation board, which is populated with the Virtex-7 XC7VX690T FPGA and provided some possible solutions to obtain better performance when more advanced FPGAs are available. The scheme can be applied readily for real-time key extraction and effectively reduce power consumption of the CV-QKD system.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.2985408</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Computer simulation ; Continuity (mathematics) ; Continuous-variable quantum key distribution (CV-QKD) ; Decoders ; Decoding ; Error correcting codes ; Error correction codes ; Field programmable gate arrays ; FPGA ; Gaussian process ; Hash based algorithms ; High speed ; Multiplexing ; Parallel processing ; Parity check codes ; Post-processing ; Power consumption ; Quantum cryptography ; real-time ; Schedules ; Signal to noise ratio ; Symbols ; Throughput</subject><ispartof>Journal of lightwave technology, 2020-08, Vol.38 (15), p.3935-3941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1fe6a5b7e68440be2cf6b976a2cd363d95804afb3d9f259a193d474b5595ff3f3</citedby><cites>FETCH-LOGICAL-c291t-1fe6a5b7e68440be2cf6b976a2cd363d95804afb3d9f259a193d474b5595ff3f3</cites><orcidid>0000-0002-2351-6603 ; 0000-0003-0228-7693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9057665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9057665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Shen-Shen</creatorcontrib><creatorcontrib>Lu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Yong-Min</creatorcontrib><title>High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In a continuous-variable quantum key distribution (CV-QKD) system, the computation speed of the post-processing procedure, including information reconciliation (IR) and privacy amplification (PA), inevitably affects the practical secret key rate. IR and PA can be implemented in parallel using low-density parity-check (LDPC) codes and hash functions, respectively. We achieve high-speed hardware-accelerated post-processing procedure for Gaussian symbols on a field-programmable gate array (FPGA) by taking advantage of its superior parallel processing ability. To this end, the sum-product algorithm decoders and a modified LDPC codes construction algorithm adapted to FPGA's characteristics are developed and employed. Two different structures including multiplexing and non-multiplexing are designed to achieve the trade-off between the speed and area of FPGAs, so that an optimal scheme can be adopted according to the requirement of a practical system. Simulation results show that the maximum throughput can reach 100 M symbols/s. We verified the correctness of the post-processing procedures when implemented on the Xilinx VC709 evaluation board, which is populated with the Virtex-7 XC7VX690T FPGA and provided some possible solutions to obtain better performance when more advanced FPGAs are available. The scheme can be applied readily for real-time key extraction and effectively reduce power consumption of the CV-QKD system.</description><subject>Codes</subject><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Continuous-variable quantum key distribution (CV-QKD)</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Error correction codes</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Gaussian process</subject><subject>Hash based algorithms</subject><subject>High speed</subject><subject>Multiplexing</subject><subject>Parallel processing</subject><subject>Parity check codes</subject><subject>Post-processing</subject><subject>Power consumption</subject><subject>Quantum cryptography</subject><subject>real-time</subject><subject>Schedules</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Throughput</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvBc2a-2xzndB86cOL0GtI2mRlrOpP0sP_ejomn94H3-YAfALcYjTBG8uFluR4RRNCIyIIzVJyBAea8gIRgeg4GKKcUFjlhl-Aqxi1CmLEiH4DN3G2-4cfemDpbtTHBVWgrE6Pzm8z5bNL65HzXdhF-6eB0uTPZe6d96prs1RyyJxdTcGWXXOuzRx37ll5MV7Nxtmj2O9MYn_TxeQ0urN5Fc_N3h-Bz-ryezOHybbaYjJewIhIniK0Rmpe5EQVjqDSksqKUudCkqqmgteQFYtqWvbKES40lrVnOSs4lt5ZaOgT3p959aH86E5Patl3w_aQijAghCGakd6GTqwptjMFYtQ-u0eGgMFJHnKrHqY441R_OPnJ3ijhjzL9dIp4Lwekvq09xSA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yang, Shen-Shen</creator><creator>Lu, Zhen-Guo</creator><creator>Li, Yong-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2351-6603</orcidid><orcidid>https://orcid.org/0000-0003-0228-7693</orcidid></search><sort><creationdate>20200801</creationdate><title>High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation</title><author>Yang, Shen-Shen ; Lu, Zhen-Guo ; Li, Yong-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1fe6a5b7e68440be2cf6b976a2cd363d95804afb3d9f259a193d474b5595ff3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Codes</topic><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Continuous-variable quantum key distribution (CV-QKD)</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Error correction codes</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Gaussian process</topic><topic>Hash based algorithms</topic><topic>High speed</topic><topic>Multiplexing</topic><topic>Parallel processing</topic><topic>Parity check codes</topic><topic>Post-processing</topic><topic>Power consumption</topic><topic>Quantum cryptography</topic><topic>real-time</topic><topic>Schedules</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shen-Shen</creatorcontrib><creatorcontrib>Lu, Zhen-Guo</creatorcontrib><creatorcontrib>Li, Yong-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Shen-Shen</au><au>Lu, Zhen-Guo</au><au>Li, Yong-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>38</volume><issue>15</issue><spage>3935</spage><epage>3941</epage><pages>3935-3941</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In a continuous-variable quantum key distribution (CV-QKD) system, the computation speed of the post-processing procedure, including information reconciliation (IR) and privacy amplification (PA), inevitably affects the practical secret key rate. IR and PA can be implemented in parallel using low-density parity-check (LDPC) codes and hash functions, respectively. We achieve high-speed hardware-accelerated post-processing procedure for Gaussian symbols on a field-programmable gate array (FPGA) by taking advantage of its superior parallel processing ability. To this end, the sum-product algorithm decoders and a modified LDPC codes construction algorithm adapted to FPGA's characteristics are developed and employed. Two different structures including multiplexing and non-multiplexing are designed to achieve the trade-off between the speed and area of FPGAs, so that an optimal scheme can be adopted according to the requirement of a practical system. Simulation results show that the maximum throughput can reach 100 M symbols/s. We verified the correctness of the post-processing procedures when implemented on the Xilinx VC709 evaluation board, which is populated with the Virtex-7 XC7VX690T FPGA and provided some possible solutions to obtain better performance when more advanced FPGAs are available. The scheme can be applied readily for real-time key extraction and effectively reduce power consumption of the CV-QKD system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.2985408</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2351-6603</orcidid><orcidid>https://orcid.org/0000-0003-0228-7693</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2020-08, Vol.38 (15), p.3935-3941 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2426662142 |
source | IEEE Electronic Library (IEL) |
subjects | Codes Computer simulation Continuity (mathematics) Continuous-variable quantum key distribution (CV-QKD) Decoders Decoding Error correcting codes Error correction codes Field programmable gate arrays FPGA Gaussian process Hash based algorithms High speed Multiplexing Parallel processing Parity check codes Post-processing Power consumption Quantum cryptography real-time Schedules Signal to noise ratio Symbols Throughput |
title | High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Speed%20Post-Processing%20in%20Continuous-Variable%20Quantum%20Key%20Distribution%20Based%20on%20FPGA%20Implementation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Yang,%20Shen-Shen&rft.date=2020-08-01&rft.volume=38&rft.issue=15&rft.spage=3935&rft.epage=3941&rft.pages=3935-3941&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.2985408&rft_dat=%3Cproquest_RIE%3E2426662142%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426662142&rft_id=info:pmid/&rft_ieee_id=9057665&rfr_iscdi=true |