Some results on strongly operator convex functions and operator monotone functions
This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operat...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-09, Vol.553, p.238-251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | Linear algebra and its applications |
container_volume | 553 |
creator | Brown, Lawrence G. Uchiyama, Mitsuru |
description | This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex. |
doi_str_mv | 10.1016/j.laa.2018.05.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426551384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518302362</els_id><sourcerecordid>2426551384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7gesZcZzK4kuINCoKXdUgzJzLDNKlJpti3d0qF7lydxf9_5xw-hK4pKSmh1W1fDsaUjFBVElkSIk_QjKqaF1TJ6hTNCGGi4HUjz9FFSj0hRNSEzdDbe1gDjpDGISccPE45Bv817HDYQDQ5RGyD38IPdqO3uQs-YePbY7oOPuTg4ZhfojNnhgRXf3OOPh8fPhbPxfL16WVxvyys4CIXlW3AOFGzlTGOc8lX1FllhGqqljnTTAGzrpaqrhpWQSvBKgmtUNS0BJzkc3Rz2LuJ4XuElHUfxuink5oJVklJuRJTix5aNoaUIji9id3axJ2mRO_V6V5P6vRenSZST-om5u7AwPT-toOok-3AW2i7CDbrNnT_0L84B3iO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426551384</pqid></control><display><type>article</type><title>Some results on strongly operator convex functions and operator monotone functions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brown, Lawrence G. ; Uchiyama, Mitsuru</creator><creatorcontrib>Brown, Lawrence G. ; Uchiyama, Mitsuru</creatorcontrib><description>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.05.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Completely monotone functions ; Continuity (mathematics) ; Convex analysis ; Convexity ; Inequalities ; Linear algebra ; Loewner theorem ; Mathematical analysis ; Mathematical functions ; Monotone functions ; Operator convex functions ; Operator monotone functions ; Operators (mathematics) ; Pick functions ; Strongly operator convex functions</subject><ispartof>Linear algebra and its applications, 2018-09, Vol.553, p.238-251</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</citedby><cites>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Brown, Lawrence G.</creatorcontrib><creatorcontrib>Uchiyama, Mitsuru</creatorcontrib><title>Some results on strongly operator convex functions and operator monotone functions</title><title>Linear algebra and its applications</title><description>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</description><subject>Completely monotone functions</subject><subject>Continuity (mathematics)</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Inequalities</subject><subject>Linear algebra</subject><subject>Loewner theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Monotone functions</subject><subject>Operator convex functions</subject><subject>Operator monotone functions</subject><subject>Operators (mathematics)</subject><subject>Pick functions</subject><subject>Strongly operator convex functions</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C7gesZcZzK4kuINCoKXdUgzJzLDNKlJpti3d0qF7lydxf9_5xw-hK4pKSmh1W1fDsaUjFBVElkSIk_QjKqaF1TJ6hTNCGGi4HUjz9FFSj0hRNSEzdDbe1gDjpDGISccPE45Bv817HDYQDQ5RGyD38IPdqO3uQs-YePbY7oOPuTg4ZhfojNnhgRXf3OOPh8fPhbPxfL16WVxvyys4CIXlW3AOFGzlTGOc8lX1FllhGqqljnTTAGzrpaqrhpWQSvBKgmtUNS0BJzkc3Rz2LuJ4XuElHUfxuink5oJVklJuRJTix5aNoaUIji9id3axJ2mRO_V6V5P6vRenSZST-om5u7AwPT-toOok-3AW2i7CDbrNnT_0L84B3iO</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Brown, Lawrence G.</creator><creator>Uchiyama, Mitsuru</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180915</creationdate><title>Some results on strongly operator convex functions and operator monotone functions</title><author>Brown, Lawrence G. ; Uchiyama, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Completely monotone functions</topic><topic>Continuity (mathematics)</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Inequalities</topic><topic>Linear algebra</topic><topic>Loewner theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Monotone functions</topic><topic>Operator convex functions</topic><topic>Operator monotone functions</topic><topic>Operators (mathematics)</topic><topic>Pick functions</topic><topic>Strongly operator convex functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Lawrence G.</creatorcontrib><creatorcontrib>Uchiyama, Mitsuru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Lawrence G.</au><au>Uchiyama, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results on strongly operator convex functions and operator monotone functions</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>553</volume><spage>238</spage><epage>251</epage><pages>238-251</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.05.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-09, Vol.553, p.238-251 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2426551384 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Completely monotone functions Continuity (mathematics) Convex analysis Convexity Inequalities Linear algebra Loewner theorem Mathematical analysis Mathematical functions Monotone functions Operator convex functions Operator monotone functions Operators (mathematics) Pick functions Strongly operator convex functions |
title | Some results on strongly operator convex functions and operator monotone functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20on%20strongly%20operator%20convex%20functions%20and%20operator%20monotone%20functions&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Brown,%20Lawrence%20G.&rft.date=2018-09-15&rft.volume=553&rft.spage=238&rft.epage=251&rft.pages=238-251&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.05.005&rft_dat=%3Cproquest_cross%3E2426551384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426551384&rft_id=info:pmid/&rft_els_id=S0024379518302362&rfr_iscdi=true |