Some results on strongly operator convex functions and operator monotone functions

This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-09, Vol.553, p.238-251
Hauptverfasser: Brown, Lawrence G., Uchiyama, Mitsuru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue
container_start_page 238
container_title Linear algebra and its applications
container_volume 553
creator Brown, Lawrence G.
Uchiyama, Mitsuru
description This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.
doi_str_mv 10.1016/j.laa.2018.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426551384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518302362</els_id><sourcerecordid>2426551384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7gesZcZzK4kuINCoKXdUgzJzLDNKlJpti3d0qF7lydxf9_5xw-hK4pKSmh1W1fDsaUjFBVElkSIk_QjKqaF1TJ6hTNCGGi4HUjz9FFSj0hRNSEzdDbe1gDjpDGISccPE45Bv817HDYQDQ5RGyD38IPdqO3uQs-YePbY7oOPuTg4ZhfojNnhgRXf3OOPh8fPhbPxfL16WVxvyys4CIXlW3AOFGzlTGOc8lX1FllhGqqljnTTAGzrpaqrhpWQSvBKgmtUNS0BJzkc3Rz2LuJ4XuElHUfxuink5oJVklJuRJTix5aNoaUIji9id3axJ2mRO_V6V5P6vRenSZST-om5u7AwPT-toOok-3AW2i7CDbrNnT_0L84B3iO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426551384</pqid></control><display><type>article</type><title>Some results on strongly operator convex functions and operator monotone functions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brown, Lawrence G. ; Uchiyama, Mitsuru</creator><creatorcontrib>Brown, Lawrence G. ; Uchiyama, Mitsuru</creatorcontrib><description>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.05.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Completely monotone functions ; Continuity (mathematics) ; Convex analysis ; Convexity ; Inequalities ; Linear algebra ; Loewner theorem ; Mathematical analysis ; Mathematical functions ; Monotone functions ; Operator convex functions ; Operator monotone functions ; Operators (mathematics) ; Pick functions ; Strongly operator convex functions</subject><ispartof>Linear algebra and its applications, 2018-09, Vol.553, p.238-251</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</citedby><cites>FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Brown, Lawrence G.</creatorcontrib><creatorcontrib>Uchiyama, Mitsuru</creatorcontrib><title>Some results on strongly operator convex functions and operator monotone functions</title><title>Linear algebra and its applications</title><description>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</description><subject>Completely monotone functions</subject><subject>Continuity (mathematics)</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Inequalities</subject><subject>Linear algebra</subject><subject>Loewner theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Monotone functions</subject><subject>Operator convex functions</subject><subject>Operator monotone functions</subject><subject>Operators (mathematics)</subject><subject>Pick functions</subject><subject>Strongly operator convex functions</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C7gesZcZzK4kuINCoKXdUgzJzLDNKlJpti3d0qF7lydxf9_5xw-hK4pKSmh1W1fDsaUjFBVElkSIk_QjKqaF1TJ6hTNCGGi4HUjz9FFSj0hRNSEzdDbe1gDjpDGISccPE45Bv817HDYQDQ5RGyD38IPdqO3uQs-YePbY7oOPuTg4ZhfojNnhgRXf3OOPh8fPhbPxfL16WVxvyys4CIXlW3AOFGzlTGOc8lX1FllhGqqljnTTAGzrpaqrhpWQSvBKgmtUNS0BJzkc3Rz2LuJ4XuElHUfxuink5oJVklJuRJTix5aNoaUIji9id3axJ2mRO_V6V5P6vRenSZST-om5u7AwPT-toOok-3AW2i7CDbrNnT_0L84B3iO</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Brown, Lawrence G.</creator><creator>Uchiyama, Mitsuru</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180915</creationdate><title>Some results on strongly operator convex functions and operator monotone functions</title><author>Brown, Lawrence G. ; Uchiyama, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6c9eaf472baaf3353b1fc8a4896d2fa972b2cf75876926ed5ec85ed481ad0ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Completely monotone functions</topic><topic>Continuity (mathematics)</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Inequalities</topic><topic>Linear algebra</topic><topic>Loewner theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Monotone functions</topic><topic>Operator convex functions</topic><topic>Operator monotone functions</topic><topic>Operators (mathematics)</topic><topic>Pick functions</topic><topic>Strongly operator convex functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Lawrence G.</creatorcontrib><creatorcontrib>Uchiyama, Mitsuru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Lawrence G.</au><au>Uchiyama, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results on strongly operator convex functions and operator monotone functions</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>553</volume><spage>238</spage><epage>251</epage><pages>238-251</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We show also that if t0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t)−f(t0)/(t−t0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of φ∘f when f is operator convex or strongly operator convex.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.05.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-09, Vol.553, p.238-251
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2426551384
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Completely monotone functions
Continuity (mathematics)
Convex analysis
Convexity
Inequalities
Linear algebra
Loewner theorem
Mathematical analysis
Mathematical functions
Monotone functions
Operator convex functions
Operator monotone functions
Operators (mathematics)
Pick functions
Strongly operator convex functions
title Some results on strongly operator convex functions and operator monotone functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20on%20strongly%20operator%20convex%20functions%20and%20operator%20monotone%20functions&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Brown,%20Lawrence%20G.&rft.date=2018-09-15&rft.volume=553&rft.spage=238&rft.epage=251&rft.pages=238-251&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.05.005&rft_dat=%3Cproquest_cross%3E2426551384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426551384&rft_id=info:pmid/&rft_els_id=S0024379518302362&rfr_iscdi=true