DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation

Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Carlier, Alexandre, Danelljan, Martin, Alahi, Alexandre, Timofte, Radu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carlier, Alexandre
Danelljan, Martin
Alahi, Alexandre
Timofte, Radu
description Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2426384320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426384320</sourcerecordid><originalsourceid>FETCH-proquest_journals_24263843203</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBbtPQScC_GkrcWt-NNOLkrXEsopptaknkS9fTN4AU4vH98zYxFIuUmKFGDBYucGIQTkW8gyGbH6gDhdmmrHS15rJEXdTXdq5BWasLx-Iz-j_1i6894Sb7DzIRWpKTjHS6MfQVmzYvNejQ7jX5dsfTpe93UykX2-0Pl2sC8y4WohhVwWqQQh_1Nfx6E7OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426384320</pqid></control><display><type>article</type><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><source>Free E- Journals</source><creator>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</creator><creatorcontrib>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</creatorcontrib><description>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer animation ; Graphical representations ; Icons ; Interpolation ; Machine learning ; Product testing ; Software development tools</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Carlier, Alexandre</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><title>arXiv.org</title><description>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</description><subject>Computer animation</subject><subject>Graphical representations</subject><subject>Icons</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Product testing</subject><subject>Software development tools</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUhuEgCBbtPQScC_GkrcWt-NNOLkrXEsopptaknkS9fTN4AU4vH98zYxFIuUmKFGDBYucGIQTkW8gyGbH6gDhdmmrHS15rJEXdTXdq5BWasLx-Iz-j_1i6894Sb7DzIRWpKTjHS6MfQVmzYvNejQ7jX5dsfTpe93UykX2-0Pl2sC8y4WohhVwWqQQh_1Nfx6E7OA</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Carlier, Alexandre</creator><creator>Danelljan, Martin</creator><creator>Alahi, Alexandre</creator><creator>Timofte, Radu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201022</creationdate><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><author>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24263843203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer animation</topic><topic>Graphical representations</topic><topic>Icons</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Product testing</topic><topic>Software development tools</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlier, Alexandre</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlier, Alexandre</au><au>Danelljan, Martin</au><au>Alahi, Alexandre</au><au>Timofte, Radu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</atitle><jtitle>arXiv.org</jtitle><date>2020-10-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2426384320
source Free E- Journals
subjects Computer animation
Graphical representations
Icons
Interpolation
Machine learning
Product testing
Software development tools
title DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepSVG:%20A%20Hierarchical%20Generative%20Network%20for%20Vector%20Graphics%20Animation&rft.jtitle=arXiv.org&rft.au=Carlier,%20Alexandre&rft.date=2020-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2426384320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426384320&rft_id=info:pmid/&rfr_iscdi=true