DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation
Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Carlier, Alexandre Danelljan, Martin Alahi, Alexandre Timofte, Radu |
description | Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2426384320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426384320</sourcerecordid><originalsourceid>FETCH-proquest_journals_24263843203</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBbtPQScC_GkrcWt-NNOLkrXEsopptaknkS9fTN4AU4vH98zYxFIuUmKFGDBYucGIQTkW8gyGbH6gDhdmmrHS15rJEXdTXdq5BWasLx-Iz-j_1i6894Sb7DzIRWpKTjHS6MfQVmzYvNejQ7jX5dsfTpe93UykX2-0Pl2sC8y4WohhVwWqQQh_1Nfx6E7OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426384320</pqid></control><display><type>article</type><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><source>Free E- Journals</source><creator>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</creator><creatorcontrib>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</creatorcontrib><description>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer animation ; Graphical representations ; Icons ; Interpolation ; Machine learning ; Product testing ; Software development tools</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Carlier, Alexandre</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><title>arXiv.org</title><description>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</description><subject>Computer animation</subject><subject>Graphical representations</subject><subject>Icons</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Product testing</subject><subject>Software development tools</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUhuEgCBbtPQScC_GkrcWt-NNOLkrXEsopptaknkS9fTN4AU4vH98zYxFIuUmKFGDBYucGIQTkW8gyGbH6gDhdmmrHS15rJEXdTXdq5BWasLx-Iz-j_1i6894Sb7DzIRWpKTjHS6MfQVmzYvNejQ7jX5dsfTpe93UykX2-0Pl2sC8y4WohhVwWqQQh_1Nfx6E7OA</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Carlier, Alexandre</creator><creator>Danelljan, Martin</creator><creator>Alahi, Alexandre</creator><creator>Timofte, Radu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201022</creationdate><title>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</title><author>Carlier, Alexandre ; Danelljan, Martin ; Alahi, Alexandre ; Timofte, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24263843203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer animation</topic><topic>Graphical representations</topic><topic>Icons</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Product testing</topic><topic>Software development tools</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlier, Alexandre</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlier, Alexandre</au><au>Danelljan, Martin</au><au>Alahi, Alexandre</au><au>Timofte, Radu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation</atitle><jtitle>arXiv.org</jtitle><date>2020-10-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2426384320 |
source | Free E- Journals |
subjects | Computer animation Graphical representations Icons Interpolation Machine learning Product testing Software development tools |
title | DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepSVG:%20A%20Hierarchical%20Generative%20Network%20for%20Vector%20Graphics%20Animation&rft.jtitle=arXiv.org&rft.au=Carlier,%20Alexandre&rft.date=2020-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2426384320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426384320&rft_id=info:pmid/&rfr_iscdi=true |