Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control

In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2020-09, Vol.43 (6), p.1519-1532
Hauptverfasser: Galimany, Eve, Lunt, Jessica, Freeman, Christopher J., Houk, Jay, Sauvage, Thomas, Santos, Larissa, Lunt, Jillian, Kolmakova, Maria, Mossop, Malcolm, Domingos, Arthur, Phlips, Edward J., Paul, Valerie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1532
container_issue 6
container_start_page 1519
container_title Estuaries and coasts
container_volume 43
creator Galimany, Eve
Lunt, Jessica
Freeman, Christopher J.
Houk, Jay
Sauvage, Thomas
Santos, Larissa
Lunt, Jillian
Kolmakova, Maria
Mossop, Malcolm
Domingos, Arthur
Phlips, Edward J.
Paul, Valerie J.
description In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.
doi_str_mv 10.1007/s12237-020-00746-9
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2426355582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48729046</jstor_id><sourcerecordid>48729046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgnP4BQQj4XM1n2zy64XQwUaY-h6y5rRldMpNu4L83WtE3n-493PPBPVl2TvAVwbi8joRSVuaY4jxBXuTyIBsRIWROS0YOf3fKjrOTGNcYcyEwH2VPE7vX3R7QDMBY16IlxK13ESLqPXqwdfC6a3WHJp33G_S8hdqmm3WofwM0d8Zqh5Z2DwEtdOu9O82OGt1FOPuZ4-x1dvsyvc8Xj3fz6c0ir1kl-pwYYyrJKCec1tQUALQRjZQNIcAqzUlRk1XDMSErMBpTILrUgnBdiwSlYePscvDdBv--g9irtd8FlyIV5bRgQoiKJhYdWOmPGAM0ahvsRocPRbD6ak4NzanUnPpuTskkYoMoJrJrIfxZ_6u6GFTr2Pvwm8OrkkrMC_YJAM55_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426355582</pqid></control><display><type>article</type><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</creator><creatorcontrib>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</creatorcontrib><description>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-020-00746-9</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Algae ; Algal blooms ; Biodiversity ; Bivalvia ; Brown tides ; Cell culture ; Chlorophyll ; Chlorophyll a ; Clams ; Coastal Sciences ; Control ; DNA ; DNA sequences ; DNA sequencing ; Earth and Environmental Science ; Ecological effects ; Ecology ; Ecosystem services ; Environment ; Environmental Management ; Estuaries ; Estuarine dynamics ; Feeding ; Feeding experiments ; Freshwater &amp; Marine Ecology ; Lagoons ; Marine molluscs ; Microalgae ; Mollusks ; Mussels ; Nitrogen isotopes ; ORIGINAL PAPERS ; Oysters ; Phytoplankton ; Rivers ; Species ; Taxonomy ; Water and Health</subject><ispartof>Estuaries and coasts, 2020-09, Vol.43 (6), p.1519-1532</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</citedby><cites>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48729046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48729046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,41486,42555,51317,58015,58248</link.rule.ids></links><search><creatorcontrib>Galimany, Eve</creatorcontrib><creatorcontrib>Lunt, Jessica</creatorcontrib><creatorcontrib>Freeman, Christopher J.</creatorcontrib><creatorcontrib>Houk, Jay</creatorcontrib><creatorcontrib>Sauvage, Thomas</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Lunt, Jillian</creatorcontrib><creatorcontrib>Kolmakova, Maria</creatorcontrib><creatorcontrib>Mossop, Malcolm</creatorcontrib><creatorcontrib>Domingos, Arthur</creatorcontrib><creatorcontrib>Phlips, Edward J.</creatorcontrib><creatorcontrib>Paul, Valerie J.</creatorcontrib><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</description><subject>Algae</subject><subject>Algal blooms</subject><subject>Biodiversity</subject><subject>Bivalvia</subject><subject>Brown tides</subject><subject>Cell culture</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Clams</subject><subject>Coastal Sciences</subject><subject>Control</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Earth and Environmental Science</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Ecosystem services</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Feeding</subject><subject>Feeding experiments</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Lagoons</subject><subject>Marine molluscs</subject><subject>Microalgae</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Nitrogen isotopes</subject><subject>ORIGINAL PAPERS</subject><subject>Oysters</subject><subject>Phytoplankton</subject><subject>Rivers</subject><subject>Species</subject><subject>Taxonomy</subject><subject>Water and Health</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UF1LwzAULaLgnP4BQQj4XM1n2zy64XQwUaY-h6y5rRldMpNu4L83WtE3n-493PPBPVl2TvAVwbi8joRSVuaY4jxBXuTyIBsRIWROS0YOf3fKjrOTGNcYcyEwH2VPE7vX3R7QDMBY16IlxK13ESLqPXqwdfC6a3WHJp33G_S8hdqmm3WofwM0d8Zqh5Z2DwEtdOu9O82OGt1FOPuZ4-x1dvsyvc8Xj3fz6c0ir1kl-pwYYyrJKCec1tQUALQRjZQNIcAqzUlRk1XDMSErMBpTILrUgnBdiwSlYePscvDdBv--g9irtd8FlyIV5bRgQoiKJhYdWOmPGAM0ahvsRocPRbD6ak4NzanUnPpuTskkYoMoJrJrIfxZ_6u6GFTr2Pvwm8OrkkrMC_YJAM55_w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Galimany, Eve</creator><creator>Lunt, Jessica</creator><creator>Freeman, Christopher J.</creator><creator>Houk, Jay</creator><creator>Sauvage, Thomas</creator><creator>Santos, Larissa</creator><creator>Lunt, Jillian</creator><creator>Kolmakova, Maria</creator><creator>Mossop, Malcolm</creator><creator>Domingos, Arthur</creator><creator>Phlips, Edward J.</creator><creator>Paul, Valerie J.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon</title><author>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Algal blooms</topic><topic>Biodiversity</topic><topic>Bivalvia</topic><topic>Brown tides</topic><topic>Cell culture</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Clams</topic><topic>Coastal Sciences</topic><topic>Control</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Earth and Environmental Science</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Ecosystem services</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Feeding</topic><topic>Feeding experiments</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Lagoons</topic><topic>Marine molluscs</topic><topic>Microalgae</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Nitrogen isotopes</topic><topic>ORIGINAL PAPERS</topic><topic>Oysters</topic><topic>Phytoplankton</topic><topic>Rivers</topic><topic>Species</topic><topic>Taxonomy</topic><topic>Water and Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galimany, Eve</creatorcontrib><creatorcontrib>Lunt, Jessica</creatorcontrib><creatorcontrib>Freeman, Christopher J.</creatorcontrib><creatorcontrib>Houk, Jay</creatorcontrib><creatorcontrib>Sauvage, Thomas</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Lunt, Jillian</creatorcontrib><creatorcontrib>Kolmakova, Maria</creatorcontrib><creatorcontrib>Mossop, Malcolm</creatorcontrib><creatorcontrib>Domingos, Arthur</creatorcontrib><creatorcontrib>Phlips, Edward J.</creatorcontrib><creatorcontrib>Paul, Valerie J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galimany, Eve</au><au>Lunt, Jessica</au><au>Freeman, Christopher J.</au><au>Houk, Jay</au><au>Sauvage, Thomas</au><au>Santos, Larissa</au><au>Lunt, Jillian</au><au>Kolmakova, Maria</au><au>Mossop, Malcolm</au><au>Domingos, Arthur</au><au>Phlips, Edward J.</au><au>Paul, Valerie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>1519</spage><epage>1532</epage><pages>1519-1532</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s12237-020-00746-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-2723
ispartof Estuaries and coasts, 2020-09, Vol.43 (6), p.1519-1532
issn 1559-2723
1559-2731
language eng
recordid cdi_proquest_journals_2426355582
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Algae
Algal blooms
Biodiversity
Bivalvia
Brown tides
Cell culture
Chlorophyll
Chlorophyll a
Clams
Coastal Sciences
Control
DNA
DNA sequences
DNA sequencing
Earth and Environmental Science
Ecological effects
Ecology
Ecosystem services
Environment
Environmental Management
Estuaries
Estuarine dynamics
Feeding
Feeding experiments
Freshwater & Marine Ecology
Lagoons
Marine molluscs
Microalgae
Mollusks
Mussels
Nitrogen isotopes
ORIGINAL PAPERS
Oysters
Phytoplankton
Rivers
Species
Taxonomy
Water and Health
title Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivalve%20Feeding%20Responses%20to%20Microalgal%20Bloom%20Species%20in%20the%20Indian%20River%20Lagoon:%20the%20Potential%20for%20Top-Down%20Control&rft.jtitle=Estuaries%20and%20coasts&rft.au=Galimany,%20Eve&rft.date=2020-09-01&rft.volume=43&rft.issue=6&rft.spage=1519&rft.epage=1532&rft.pages=1519-1532&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-020-00746-9&rft_dat=%3Cjstor_proqu%3E48729046%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426355582&rft_id=info:pmid/&rft_jstor_id=48729046&rfr_iscdi=true