Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control
In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll...
Gespeichert in:
Veröffentlicht in: | Estuaries and coasts 2020-09, Vol.43 (6), p.1519-1532 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1532 |
---|---|
container_issue | 6 |
container_start_page | 1519 |
container_title | Estuaries and coasts |
container_volume | 43 |
creator | Galimany, Eve Lunt, Jessica Freeman, Christopher J. Houk, Jay Sauvage, Thomas Santos, Larissa Lunt, Jillian Kolmakova, Maria Mossop, Malcolm Domingos, Arthur Phlips, Edward J. Paul, Valerie J. |
description | In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide. |
doi_str_mv | 10.1007/s12237-020-00746-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2426355582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48729046</jstor_id><sourcerecordid>48729046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgnP4BQQj4XM1n2zy64XQwUaY-h6y5rRldMpNu4L83WtE3n-493PPBPVl2TvAVwbi8joRSVuaY4jxBXuTyIBsRIWROS0YOf3fKjrOTGNcYcyEwH2VPE7vX3R7QDMBY16IlxK13ESLqPXqwdfC6a3WHJp33G_S8hdqmm3WofwM0d8Zqh5Z2DwEtdOu9O82OGt1FOPuZ4-x1dvsyvc8Xj3fz6c0ir1kl-pwYYyrJKCec1tQUALQRjZQNIcAqzUlRk1XDMSErMBpTILrUgnBdiwSlYePscvDdBv--g9irtd8FlyIV5bRgQoiKJhYdWOmPGAM0ahvsRocPRbD6ak4NzanUnPpuTskkYoMoJrJrIfxZ_6u6GFTr2Pvwm8OrkkrMC_YJAM55_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426355582</pqid></control><display><type>article</type><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</creator><creatorcontrib>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</creatorcontrib><description>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-020-00746-9</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Algae ; Algal blooms ; Biodiversity ; Bivalvia ; Brown tides ; Cell culture ; Chlorophyll ; Chlorophyll a ; Clams ; Coastal Sciences ; Control ; DNA ; DNA sequences ; DNA sequencing ; Earth and Environmental Science ; Ecological effects ; Ecology ; Ecosystem services ; Environment ; Environmental Management ; Estuaries ; Estuarine dynamics ; Feeding ; Feeding experiments ; Freshwater & Marine Ecology ; Lagoons ; Marine molluscs ; Microalgae ; Mollusks ; Mussels ; Nitrogen isotopes ; ORIGINAL PAPERS ; Oysters ; Phytoplankton ; Rivers ; Species ; Taxonomy ; Water and Health</subject><ispartof>Estuaries and coasts, 2020-09, Vol.43 (6), p.1519-1532</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</citedby><cites>FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48729046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48729046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,41486,42555,51317,58015,58248</link.rule.ids></links><search><creatorcontrib>Galimany, Eve</creatorcontrib><creatorcontrib>Lunt, Jessica</creatorcontrib><creatorcontrib>Freeman, Christopher J.</creatorcontrib><creatorcontrib>Houk, Jay</creatorcontrib><creatorcontrib>Sauvage, Thomas</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Lunt, Jillian</creatorcontrib><creatorcontrib>Kolmakova, Maria</creatorcontrib><creatorcontrib>Mossop, Malcolm</creatorcontrib><creatorcontrib>Domingos, Arthur</creatorcontrib><creatorcontrib>Phlips, Edward J.</creatorcontrib><creatorcontrib>Paul, Valerie J.</creatorcontrib><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</description><subject>Algae</subject><subject>Algal blooms</subject><subject>Biodiversity</subject><subject>Bivalvia</subject><subject>Brown tides</subject><subject>Cell culture</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Clams</subject><subject>Coastal Sciences</subject><subject>Control</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Earth and Environmental Science</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Ecosystem services</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Feeding</subject><subject>Feeding experiments</subject><subject>Freshwater & Marine Ecology</subject><subject>Lagoons</subject><subject>Marine molluscs</subject><subject>Microalgae</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Nitrogen isotopes</subject><subject>ORIGINAL PAPERS</subject><subject>Oysters</subject><subject>Phytoplankton</subject><subject>Rivers</subject><subject>Species</subject><subject>Taxonomy</subject><subject>Water and Health</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UF1LwzAULaLgnP4BQQj4XM1n2zy64XQwUaY-h6y5rRldMpNu4L83WtE3n-493PPBPVl2TvAVwbi8joRSVuaY4jxBXuTyIBsRIWROS0YOf3fKjrOTGNcYcyEwH2VPE7vX3R7QDMBY16IlxK13ESLqPXqwdfC6a3WHJp33G_S8hdqmm3WofwM0d8Zqh5Z2DwEtdOu9O82OGt1FOPuZ4-x1dvsyvc8Xj3fz6c0ir1kl-pwYYyrJKCec1tQUALQRjZQNIcAqzUlRk1XDMSErMBpTILrUgnBdiwSlYePscvDdBv--g9irtd8FlyIV5bRgQoiKJhYdWOmPGAM0ahvsRocPRbD6ak4NzanUnPpuTskkYoMoJrJrIfxZ_6u6GFTr2Pvwm8OrkkrMC_YJAM55_w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Galimany, Eve</creator><creator>Lunt, Jessica</creator><creator>Freeman, Christopher J.</creator><creator>Houk, Jay</creator><creator>Sauvage, Thomas</creator><creator>Santos, Larissa</creator><creator>Lunt, Jillian</creator><creator>Kolmakova, Maria</creator><creator>Mossop, Malcolm</creator><creator>Domingos, Arthur</creator><creator>Phlips, Edward J.</creator><creator>Paul, Valerie J.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon</title><author>Galimany, Eve ; Lunt, Jessica ; Freeman, Christopher J. ; Houk, Jay ; Sauvage, Thomas ; Santos, Larissa ; Lunt, Jillian ; Kolmakova, Maria ; Mossop, Malcolm ; Domingos, Arthur ; Phlips, Edward J. ; Paul, Valerie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1ddd89324142c2d6ee2f5f99f11e38a416c1bf4011beda02e1a7a514ac5da09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Algal blooms</topic><topic>Biodiversity</topic><topic>Bivalvia</topic><topic>Brown tides</topic><topic>Cell culture</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Clams</topic><topic>Coastal Sciences</topic><topic>Control</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Earth and Environmental Science</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Ecosystem services</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Feeding</topic><topic>Feeding experiments</topic><topic>Freshwater & Marine Ecology</topic><topic>Lagoons</topic><topic>Marine molluscs</topic><topic>Microalgae</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Nitrogen isotopes</topic><topic>ORIGINAL PAPERS</topic><topic>Oysters</topic><topic>Phytoplankton</topic><topic>Rivers</topic><topic>Species</topic><topic>Taxonomy</topic><topic>Water and Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galimany, Eve</creatorcontrib><creatorcontrib>Lunt, Jessica</creatorcontrib><creatorcontrib>Freeman, Christopher J.</creatorcontrib><creatorcontrib>Houk, Jay</creatorcontrib><creatorcontrib>Sauvage, Thomas</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Lunt, Jillian</creatorcontrib><creatorcontrib>Kolmakova, Maria</creatorcontrib><creatorcontrib>Mossop, Malcolm</creatorcontrib><creatorcontrib>Domingos, Arthur</creatorcontrib><creatorcontrib>Phlips, Edward J.</creatorcontrib><creatorcontrib>Paul, Valerie J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galimany, Eve</au><au>Lunt, Jessica</au><au>Freeman, Christopher J.</au><au>Houk, Jay</au><au>Sauvage, Thomas</au><au>Santos, Larissa</au><au>Lunt, Jillian</au><au>Kolmakova, Maria</au><au>Mossop, Malcolm</au><au>Domingos, Arthur</au><au>Phlips, Edward J.</au><au>Paul, Valerie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>1519</spage><epage>1532</epage><pages>1519-1532</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 µg chlorophyll a L⁻¹. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 10⁴ cells mL⁻¹ of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (¹⁵N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched ¹⁵N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s12237-020-00746-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-2723 |
ispartof | Estuaries and coasts, 2020-09, Vol.43 (6), p.1519-1532 |
issn | 1559-2723 1559-2731 |
language | eng |
recordid | cdi_proquest_journals_2426355582 |
source | JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Algae Algal blooms Biodiversity Bivalvia Brown tides Cell culture Chlorophyll Chlorophyll a Clams Coastal Sciences Control DNA DNA sequences DNA sequencing Earth and Environmental Science Ecological effects Ecology Ecosystem services Environment Environmental Management Estuaries Estuarine dynamics Feeding Feeding experiments Freshwater & Marine Ecology Lagoons Marine molluscs Microalgae Mollusks Mussels Nitrogen isotopes ORIGINAL PAPERS Oysters Phytoplankton Rivers Species Taxonomy Water and Health |
title | Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivalve%20Feeding%20Responses%20to%20Microalgal%20Bloom%20Species%20in%20the%20Indian%20River%20Lagoon:%20the%20Potential%20for%20Top-Down%20Control&rft.jtitle=Estuaries%20and%20coasts&rft.au=Galimany,%20Eve&rft.date=2020-09-01&rft.volume=43&rft.issue=6&rft.spage=1519&rft.epage=1532&rft.pages=1519-1532&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-020-00746-9&rft_dat=%3Cjstor_proqu%3E48729046%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426355582&rft_id=info:pmid/&rft_jstor_id=48729046&rfr_iscdi=true |