On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization

One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in H ∞ satisfying certain interpolation conditions. The problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2019-01, Vol.41 (2), p.476-483
Hauptverfasser: Yücesoy, Veysel, Özbay, Hitay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 2
container_start_page 476
container_title Transactions of the Institute of Measurement and Control
container_volume 41
creator Yücesoy, Veysel
Özbay, Hitay
description One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in H ∞ satisfying certain interpolation conditions. The problem is transformed into a classical Nevanlinna–Pick interpolation problem by using a predetermined structure for the unit interpolating function and analysed through the associated Pick matrix. Sufficient conditions for the existence of the bounded unit interpolating function are derived. Based on these conditions, an algorithm is proposed to compute the unit interpolating function through an optimal solution to the Nevanlinna–Pick problem. The conservatism caused by the sufficient conditions is illustrated through strong stabilization examples taken from the literature.
doi_str_mv 10.1177/0142331218759598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2426122176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331218759598</sage_id><sourcerecordid>2426122176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2668-5a001d3274a85e7bd6e2034aa064b796cd16095744a28f0be1f58596d7419d3f3</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOLp3GXA71STNo1nK4AsGZqPrkjbpmKGT1CRd6NqF4D_4cfMltjOCILg6l3se3HsAOMfoEmMhrhCmJM8xwYVgksniAEwwFSJDOZeHYDLS2cgfg5MY1wghSjmdgLB0MD0bGIxqZzCoZL0bp8r3Ths9g72zCVqXTOh8u6NhF3zVms2whdv3T7j9-ILKaWhThKrrWlvvZBEmD2MK3q0GUJVt7duOOAVHjWqjOfvBKXi6vXmc32eL5d3D_HqR1YTzImMKIaxzIqgqmBGV5oagnCqFOK2E5LXGHEkmKFWkaFBlcMMKJrkWFEudN_kUXOxzh3tfehNTufZ9GL6LJaGEY0Kw4IMK7VV18DEG05RdsBsVXkuMyrHZ8m-zgyXbW6Jamd_Qf_XfjXJ5gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426122176</pqid></control><display><type>article</type><title>On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization</title><source>SAGE Complete A-Z List</source><creator>Yücesoy, Veysel ; Özbay, Hitay</creator><creatorcontrib>Yücesoy, Veysel ; Özbay, Hitay</creatorcontrib><description>One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in H ∞ satisfying certain interpolation conditions. The problem is transformed into a classical Nevanlinna–Pick interpolation problem by using a predetermined structure for the unit interpolating function and analysed through the associated Pick matrix. Sufficient conditions for the existence of the bounded unit interpolating function are derived. Based on these conditions, an algorithm is proposed to compute the unit interpolating function through an optimal solution to the Nevanlinna–Pick problem. The conservatism caused by the sufficient conditions is illustrated through strong stabilization examples taken from the literature.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331218759598</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Feedback control ; H-infinity control ; Interpolation ; Stabilization</subject><ispartof>Transactions of the Institute of Measurement and Control, 2019-01, Vol.41 (2), p.476-483</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2668-5a001d3274a85e7bd6e2034aa064b796cd16095744a28f0be1f58596d7419d3f3</citedby><cites>FETCH-LOGICAL-c2668-5a001d3274a85e7bd6e2034aa064b796cd16095744a28f0be1f58596d7419d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331218759598$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331218759598$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Yücesoy, Veysel</creatorcontrib><creatorcontrib>Özbay, Hitay</creatorcontrib><title>On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization</title><title>Transactions of the Institute of Measurement and Control</title><description>One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in H ∞ satisfying certain interpolation conditions. The problem is transformed into a classical Nevanlinna–Pick interpolation problem by using a predetermined structure for the unit interpolating function and analysed through the associated Pick matrix. Sufficient conditions for the existence of the bounded unit interpolating function are derived. Based on these conditions, an algorithm is proposed to compute the unit interpolating function through an optimal solution to the Nevanlinna–Pick problem. The conservatism caused by the sufficient conditions is illustrated through strong stabilization examples taken from the literature.</description><subject>Algorithms</subject><subject>Feedback control</subject><subject>H-infinity control</subject><subject>Interpolation</subject><subject>Stabilization</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOLp3GXA71STNo1nK4AsGZqPrkjbpmKGT1CRd6NqF4D_4cfMltjOCILg6l3se3HsAOMfoEmMhrhCmJM8xwYVgksniAEwwFSJDOZeHYDLS2cgfg5MY1wghSjmdgLB0MD0bGIxqZzCoZL0bp8r3Ths9g72zCVqXTOh8u6NhF3zVms2whdv3T7j9-ILKaWhThKrrWlvvZBEmD2MK3q0GUJVt7duOOAVHjWqjOfvBKXi6vXmc32eL5d3D_HqR1YTzImMKIaxzIqgqmBGV5oagnCqFOK2E5LXGHEkmKFWkaFBlcMMKJrkWFEudN_kUXOxzh3tfehNTufZ9GL6LJaGEY0Kw4IMK7VV18DEG05RdsBsVXkuMyrHZ8m-zgyXbW6Jamd_Qf_XfjXJ5gQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yücesoy, Veysel</creator><creator>Özbay, Hitay</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization</title><author>Yücesoy, Veysel ; Özbay, Hitay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2668-5a001d3274a85e7bd6e2034aa064b796cd16095744a28f0be1f58596d7419d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Feedback control</topic><topic>H-infinity control</topic><topic>Interpolation</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yücesoy, Veysel</creatorcontrib><creatorcontrib>Özbay, Hitay</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yücesoy, Veysel</au><au>Özbay, Hitay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2019-01</date><risdate>2019</risdate><volume>41</volume><issue>2</issue><spage>476</spage><epage>483</epage><pages>476-483</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>One of the most challenging problems in feedback control is strong stabilization, i.e. stabilization by a stable controller. This problem has been shown to be equivalent to finding a finite dimensional, real, rational and bounded unit in H ∞ satisfying certain interpolation conditions. The problem is transformed into a classical Nevanlinna–Pick interpolation problem by using a predetermined structure for the unit interpolating function and analysed through the associated Pick matrix. Sufficient conditions for the existence of the bounded unit interpolating function are derived. Based on these conditions, an algorithm is proposed to compute the unit interpolating function through an optimal solution to the Nevanlinna–Pick problem. The conservatism caused by the sufficient conditions is illustrated through strong stabilization examples taken from the literature.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331218759598</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2019-01, Vol.41 (2), p.476-483
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2426122176
source SAGE Complete A-Z List
subjects Algorithms
Feedback control
H-infinity control
Interpolation
Stabilization
title On the real, rational, bounded, unit interpolation problem in ℋ ∞ and its applications to strong stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20real,%20rational,%20bounded,%20unit%20interpolation%20problem%20in%20%E2%84%8B%20%E2%88%9E%20and%20its%20applications%20to%20strong%20stabilization&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Y%C3%BCcesoy,%20Veysel&rft.date=2019-01&rft.volume=41&rft.issue=2&rft.spage=476&rft.epage=483&rft.pages=476-483&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331218759598&rft_dat=%3Cproquest_cross%3E2426122176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426122176&rft_id=info:pmid/&rft_sage_id=10.1177_0142331218759598&rfr_iscdi=true