Machine Learning to Quantify Physical Activity in Children with Cerebral Palsy: Comparison of Group, Group-Personalized, and Fully-Personalized Activity Classification Models

Pattern recognition methodologies, such as those utilizing machine learning (ML) approaches, have the potential to improve the accuracy and versatility of accelerometer-based assessments of physical activity (PA). Children with cerebral palsy (CP) exhibit significant heterogeneity in relation to imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-07, Vol.20 (14), p.3976, Article 3976
Hauptverfasser: Ahmadi, Matthew N., O'Neil, Margaret E., Baque, Emmah, Boyd, Roslyn N., Trost, Stewart G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pattern recognition methodologies, such as those utilizing machine learning (ML) approaches, have the potential to improve the accuracy and versatility of accelerometer-based assessments of physical activity (PA). Children with cerebral palsy (CP) exhibit significant heterogeneity in relation to impairment and activity limitations; however, studies conducted to date have implemented "one-size fits all" group (G) models. Group-personalized (GP) models specific to the Gross Motor Function Classification (GMFCS) level and fully-personalized (FP) models trained on individual data may provide more accurate assessments of PA; however, these approaches have not been investigated in children with CP. In this study, 38 children classified at GMFCS I to III completed laboratory trials and a simulated free-living protocol while wearing an ActiGraph GT3X+ on the wrist, hip, and ankle. Activities were classified as sedentary, standing utilitarian movements, or walking. In the cross-validation, FP random forest classifiers (99.0-99.3%) exhibited a significantly higher accuracy than G (80.9-94.7%) and GP classifiers (78.7-94.1%), with the largest differential observed in children at GMFCS III. When evaluated under free-living conditions, all model types exhibited significant declines in accuracy, with FP models outperforming G and GP models in GMFCS levels I and II, but not III. Future studies should evaluate the comparative accuracy of personalized models trained on free-living accelerometer data.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20143976