Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation

Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2020-07, Vol.8 (7), p.865
Hauptverfasser: Gómez-Blanco, J. Carlos, Mancha-Sánchez, Enrique, Marcos, Alfonso C., Matamoros, Manuel, Díaz-Parralejo, Antonio, Pagador, J. Blas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 865
container_title Processes
container_volume 8
creator Gómez-Blanco, J. Carlos
Mancha-Sánchez, Enrique
Marcos, Alfonso C.
Matamoros, Manuel
Díaz-Parralejo, Antonio
Pagador, J. Blas
description Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the material behavior using parametric changes in rheological properties under testing. Additionally, most bioinks have specific functionalities and their properties might widely change with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for all combinations. Although these ranges are small and define a good thermo-responsive bioink, they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink provides a very stable behavior with low shear stress, but other bioprinting parameters must be set up to get a stable filament width.
doi_str_mv 10.3390/pr8070865
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425905193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425905193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7fed278387f9390cbffbc3d64e898ceb50b38fea58cbdd27214eaf87acb3aaf73</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWGoP_oOAJ8HVbNJtkqMWq4WCQluvS5Kd6NbdZE2yh_57t1bEubwZ-Hi8eQhd5uSWMUnuuiAIJ2JWnKARpZRnkuf89N9-jiYx7sgwMmeimI2Qfqh97T7xBtoOgkp9ALx0tunBGcDe4fUHqIDXKUCMN_j1IAdGuQq_QeNNnfZ4G2v3jue-7fqkUu2davC6bvvm57hAZ1Y1ESa_OkbbxeNm_pytXp6W8_tVZqikKeMWKsoFE9zK4RmjrdWGVbMpCCkM6IJoJiyoQhhdDSTNp6Cs4MpoppTlbIyujr5d8F89xFTufB-GLLGkU1pIUuSSDdT1kTLBxxjAll2oWxX2ZU7KQ4vlX4vsGyMVZqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425905193</pqid></control><display><type>article</type><title>Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gómez-Blanco, J. Carlos ; Mancha-Sánchez, Enrique ; Marcos, Alfonso C. ; Matamoros, Manuel ; Díaz-Parralejo, Antonio ; Pagador, J. Blas</creator><creatorcontrib>Gómez-Blanco, J. Carlos ; Mancha-Sánchez, Enrique ; Marcos, Alfonso C. ; Matamoros, Manuel ; Díaz-Parralejo, Antonio ; Pagador, J. Blas</creatorcontrib><description>Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the material behavior using parametric changes in rheological properties under testing. Additionally, most bioinks have specific functionalities and their properties might widely change with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for all combinations. Although these ranges are small and define a good thermo-responsive bioink, they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink provides a very stable behavior with low shear stress, but other bioprinting parameters must be set up to get a stable filament width.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8070865</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bioengineering ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Conical nozzles ; Extrusion ; Hydrogels ; Non-Newtonian fluids ; Nozzle geometry ; Pressure ; Properties (attributes) ; Rheological properties ; Rheology ; Shear stress ; Simulation ; Studies ; Three dimensional printing ; Tissue engineering ; Velocity ; Viscosity</subject><ispartof>Processes, 2020-07, Vol.8 (7), p.865</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7fed278387f9390cbffbc3d64e898ceb50b38fea58cbdd27214eaf87acb3aaf73</citedby><cites>FETCH-LOGICAL-c292t-7fed278387f9390cbffbc3d64e898ceb50b38fea58cbdd27214eaf87acb3aaf73</cites><orcidid>0000-0002-4354-5313 ; 0000-0002-0882-4210 ; 0000-0002-3187-1728 ; 0000-0002-4382-5075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gómez-Blanco, J. Carlos</creatorcontrib><creatorcontrib>Mancha-Sánchez, Enrique</creatorcontrib><creatorcontrib>Marcos, Alfonso C.</creatorcontrib><creatorcontrib>Matamoros, Manuel</creatorcontrib><creatorcontrib>Díaz-Parralejo, Antonio</creatorcontrib><creatorcontrib>Pagador, J. Blas</creatorcontrib><title>Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation</title><title>Processes</title><description>Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the material behavior using parametric changes in rheological properties under testing. Additionally, most bioinks have specific functionalities and their properties might widely change with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for all combinations. Although these ranges are small and define a good thermo-responsive bioink, they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink provides a very stable behavior with low shear stress, but other bioprinting parameters must be set up to get a stable filament width.</description><subject>Bioengineering</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Conical nozzles</subject><subject>Extrusion</subject><subject>Hydrogels</subject><subject>Non-Newtonian fluids</subject><subject>Nozzle geometry</subject><subject>Pressure</subject><subject>Properties (attributes)</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Studies</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEFLAzEQhYMoWGoP_oOAJ8HVbNJtkqMWq4WCQluvS5Kd6NbdZE2yh_57t1bEubwZ-Hi8eQhd5uSWMUnuuiAIJ2JWnKARpZRnkuf89N9-jiYx7sgwMmeimI2Qfqh97T7xBtoOgkp9ALx0tunBGcDe4fUHqIDXKUCMN_j1IAdGuQq_QeNNnfZ4G2v3jue-7fqkUu2davC6bvvm57hAZ1Y1ESa_OkbbxeNm_pytXp6W8_tVZqikKeMWKsoFE9zK4RmjrdWGVbMpCCkM6IJoJiyoQhhdDSTNp6Cs4MpoppTlbIyujr5d8F89xFTufB-GLLGkU1pIUuSSDdT1kTLBxxjAll2oWxX2ZU7KQ4vlX4vsGyMVZqo</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gómez-Blanco, J. Carlos</creator><creator>Mancha-Sánchez, Enrique</creator><creator>Marcos, Alfonso C.</creator><creator>Matamoros, Manuel</creator><creator>Díaz-Parralejo, Antonio</creator><creator>Pagador, J. Blas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4354-5313</orcidid><orcidid>https://orcid.org/0000-0002-0882-4210</orcidid><orcidid>https://orcid.org/0000-0002-3187-1728</orcidid><orcidid>https://orcid.org/0000-0002-4382-5075</orcidid></search><sort><creationdate>20200701</creationdate><title>Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation</title><author>Gómez-Blanco, J. Carlos ; Mancha-Sánchez, Enrique ; Marcos, Alfonso C. ; Matamoros, Manuel ; Díaz-Parralejo, Antonio ; Pagador, J. Blas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7fed278387f9390cbffbc3d64e898ceb50b38fea58cbdd27214eaf87acb3aaf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Conical nozzles</topic><topic>Extrusion</topic><topic>Hydrogels</topic><topic>Non-Newtonian fluids</topic><topic>Nozzle geometry</topic><topic>Pressure</topic><topic>Properties (attributes)</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Studies</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Blanco, J. Carlos</creatorcontrib><creatorcontrib>Mancha-Sánchez, Enrique</creatorcontrib><creatorcontrib>Marcos, Alfonso C.</creatorcontrib><creatorcontrib>Matamoros, Manuel</creatorcontrib><creatorcontrib>Díaz-Parralejo, Antonio</creatorcontrib><creatorcontrib>Pagador, J. Blas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Blanco, J. Carlos</au><au>Mancha-Sánchez, Enrique</au><au>Marcos, Alfonso C.</au><au>Matamoros, Manuel</au><au>Díaz-Parralejo, Antonio</au><au>Pagador, J. Blas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation</atitle><jtitle>Processes</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>8</volume><issue>7</issue><spage>865</spage><pages>865-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Bioinks are usually cell-laden hydrogels widely studied in bioprinting performing experimental tests to tune their rheological properties, thus increasing research time and development costs. Computational Fluids Dynamics (CFD) is a powerful tool that can minimize iterations and costs simulating the material behavior using parametric changes in rheological properties under testing. Additionally, most bioinks have specific functionalities and their properties might widely change with temperature. Therefore, commercial bioinks are an excellent way to standardize bioprinting process, but they are not analyzed in detail. Therefore, the objective of this work is to study how three temperatures of the Cellink Bioink influence shear stress pressure and velocity through computational simulation. A comparison of three conical nozzles (20, 22, and 25G) for each temperature has been performed. The results show that shear stress, pressure, and velocity vary in negligible ranges for all combinations. Although these ranges are small and define a good thermo-responsive bioink, they do not generate a filament on the air and make drops during extrusion. In conclusion, this bioink provides a very stable behavior with low shear stress, but other bioprinting parameters must be set up to get a stable filament width.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8070865</doi><orcidid>https://orcid.org/0000-0002-4354-5313</orcidid><orcidid>https://orcid.org/0000-0002-0882-4210</orcidid><orcidid>https://orcid.org/0000-0002-3187-1728</orcidid><orcidid>https://orcid.org/0000-0002-4382-5075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2020-07, Vol.8 (7), p.865
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2425905193
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bioengineering
Computational fluid dynamics
Computer applications
Computer simulation
Conical nozzles
Extrusion
Hydrogels
Non-Newtonian fluids
Nozzle geometry
Pressure
Properties (attributes)
Rheological properties
Rheology
Shear stress
Simulation
Studies
Three dimensional printing
Tissue engineering
Velocity
Viscosity
title Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioink%20Temperature%20Influence%20on%20Shear%20Stress,%20Pressure%20and%20Velocity%20Using%20Computational%20Simulation&rft.jtitle=Processes&rft.au=G%C3%B3mez-Blanco,%20J.%20Carlos&rft.date=2020-07-01&rft.volume=8&rft.issue=7&rft.spage=865&rft.pages=865-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8070865&rft_dat=%3Cproquest_cross%3E2425905193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425905193&rft_id=info:pmid/&rfr_iscdi=true