Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia
A facile co-precipitation technique is used to fabricate ZnO and AZO (Al-doped ZnO) nanoparticles. It is analyzed and investigated that the effect of Al doping concentration has altered the structural and morphological properties of the nanoparticles. Increasing the concentration of doping has reduc...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-08, Vol.31 (15), p.12579-12585 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12585 |
---|---|
container_issue | 15 |
container_start_page | 12579 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Varudkar, H. A. Umadevi, G. Nagaraju, P. Dargad, J. S. Mote, V. D. |
description | A facile co-precipitation technique is used to fabricate ZnO and AZO (Al-doped ZnO) nanoparticles. It is analyzed and investigated that the effect of Al doping concentration has altered the structural and morphological properties of the nanoparticles. Increasing the concentration of doping has reduced the average crystallite size considerably in the range 18–24 nm. With the increased microstrain, we observe that bond length decreases for AZO nanoparticles. FESEM images indicate that morphology varies from the hexagonal crystalline phase of ZnO structure to the spherical shape of AZO samples. The UV–Vis spectroscopic studies showed that Al was incorporated into ZnO lattice as Al
3+
due to the decreasing optical band gap of nanoparticles. The gas sensing responses of ZnO and AZO nanoparticles have been studied at optimum temperature with a low concentration of ammonia gas. The sensing studies revealed that the response of gas mainly relies on the size of the particles. |
doi_str_mv | 10.1007/s10854-020-03808-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425727935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425727935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2818622a41b933137b5f94a1c51a5f16dc4504dd62fb4b9f9e244ba54e1c44993</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKt_wFPAczSfm82xFKuC0IuCeAnZJFu37CZrsj1486cbrcWbh5f3MPPMwABwSfA1wVjeZIJrwRGmGGFW4xrJIzAjQjLEa_pyDGZYCYm4oPQUnOW8xRhXnNUz8LkyTeqsmboYYGzhokcujt7B17CGwYQ4mjR1tvcZmuDg9Oa7BM049gfGFAFmP3Q2BrezU0yoMbkEbIqSfcgxwbZcIaHzk7eHJjMMMXTmHJy0ps_-4vfPwfPq9ml5jx7Xdw_LxSOyjKgJ0ZrUFaWGk0YxRphsRKu4IVYQI1pSOcsF5s5VtG14o1rlKeeNEdwTy7lSbA6u9rljiu87nye9jbsUSqWmnApJpWKiuOjeZVPMOflWj6kbTPrQBOvvpfV-aV2W1j9La1kgtodyMYeNT3_R_1BfdRaCGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425727935</pqid></control><display><type>article</type><title>Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Varudkar, H. A. ; Umadevi, G. ; Nagaraju, P. ; Dargad, J. S. ; Mote, V. D.</creator><creatorcontrib>Varudkar, H. A. ; Umadevi, G. ; Nagaraju, P. ; Dargad, J. S. ; Mote, V. D.</creatorcontrib><description>A facile co-precipitation technique is used to fabricate ZnO and AZO (Al-doped ZnO) nanoparticles. It is analyzed and investigated that the effect of Al doping concentration has altered the structural and morphological properties of the nanoparticles. Increasing the concentration of doping has reduced the average crystallite size considerably in the range 18–24 nm. With the increased microstrain, we observe that bond length decreases for AZO nanoparticles. FESEM images indicate that morphology varies from the hexagonal crystalline phase of ZnO structure to the spherical shape of AZO samples. The UV–Vis spectroscopic studies showed that Al was incorporated into ZnO lattice as Al
3+
due to the decreasing optical band gap of nanoparticles. The gas sensing responses of ZnO and AZO nanoparticles have been studied at optimum temperature with a low concentration of ammonia gas. The sensing studies revealed that the response of gas mainly relies on the size of the particles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03808-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Ammonia ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Doping ; Gas sensors ; Materials Science ; Microstrain ; Morphology ; Nanoparticles ; Optical and Electronic Materials ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2020-08, Vol.31 (15), p.12579-12585</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2818622a41b933137b5f94a1c51a5f16dc4504dd62fb4b9f9e244ba54e1c44993</citedby><cites>FETCH-LOGICAL-c319t-2818622a41b933137b5f94a1c51a5f16dc4504dd62fb4b9f9e244ba54e1c44993</cites><orcidid>0000-0002-6323-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03808-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03808-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Varudkar, H. A.</creatorcontrib><creatorcontrib>Umadevi, G.</creatorcontrib><creatorcontrib>Nagaraju, P.</creatorcontrib><creatorcontrib>Dargad, J. S.</creatorcontrib><creatorcontrib>Mote, V. D.</creatorcontrib><title>Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A facile co-precipitation technique is used to fabricate ZnO and AZO (Al-doped ZnO) nanoparticles. It is analyzed and investigated that the effect of Al doping concentration has altered the structural and morphological properties of the nanoparticles. Increasing the concentration of doping has reduced the average crystallite size considerably in the range 18–24 nm. With the increased microstrain, we observe that bond length decreases for AZO nanoparticles. FESEM images indicate that morphology varies from the hexagonal crystalline phase of ZnO structure to the spherical shape of AZO samples. The UV–Vis spectroscopic studies showed that Al was incorporated into ZnO lattice as Al
3+
due to the decreasing optical band gap of nanoparticles. The gas sensing responses of ZnO and AZO nanoparticles have been studied at optimum temperature with a low concentration of ammonia gas. The sensing studies revealed that the response of gas mainly relies on the size of the particles.</description><subject>Aluminum</subject><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Doping</subject><subject>Gas sensors</subject><subject>Materials Science</subject><subject>Microstrain</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEYhIMoWKt_wFPAczSfm82xFKuC0IuCeAnZJFu37CZrsj1486cbrcWbh5f3MPPMwABwSfA1wVjeZIJrwRGmGGFW4xrJIzAjQjLEa_pyDGZYCYm4oPQUnOW8xRhXnNUz8LkyTeqsmboYYGzhokcujt7B17CGwYQ4mjR1tvcZmuDg9Oa7BM049gfGFAFmP3Q2BrezU0yoMbkEbIqSfcgxwbZcIaHzk7eHJjMMMXTmHJy0ps_-4vfPwfPq9ml5jx7Xdw_LxSOyjKgJ0ZrUFaWGk0YxRphsRKu4IVYQI1pSOcsF5s5VtG14o1rlKeeNEdwTy7lSbA6u9rljiu87nye9jbsUSqWmnApJpWKiuOjeZVPMOflWj6kbTPrQBOvvpfV-aV2W1j9La1kgtodyMYeNT3_R_1BfdRaCGA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Varudkar, H. A.</creator><creator>Umadevi, G.</creator><creator>Nagaraju, P.</creator><creator>Dargad, J. S.</creator><creator>Mote, V. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6323-0386</orcidid></search><sort><creationdate>20200801</creationdate><title>Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia</title><author>Varudkar, H. A. ; Umadevi, G. ; Nagaraju, P. ; Dargad, J. S. ; Mote, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2818622a41b933137b5f94a1c51a5f16dc4504dd62fb4b9f9e244ba54e1c44993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Doping</topic><topic>Gas sensors</topic><topic>Materials Science</topic><topic>Microstrain</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varudkar, H. A.</creatorcontrib><creatorcontrib>Umadevi, G.</creatorcontrib><creatorcontrib>Nagaraju, P.</creatorcontrib><creatorcontrib>Dargad, J. S.</creatorcontrib><creatorcontrib>Mote, V. D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varudkar, H. A.</au><au>Umadevi, G.</au><au>Nagaraju, P.</au><au>Dargad, J. S.</au><au>Mote, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>31</volume><issue>15</issue><spage>12579</spage><epage>12585</epage><pages>12579-12585</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A facile co-precipitation technique is used to fabricate ZnO and AZO (Al-doped ZnO) nanoparticles. It is analyzed and investigated that the effect of Al doping concentration has altered the structural and morphological properties of the nanoparticles. Increasing the concentration of doping has reduced the average crystallite size considerably in the range 18–24 nm. With the increased microstrain, we observe that bond length decreases for AZO nanoparticles. FESEM images indicate that morphology varies from the hexagonal crystalline phase of ZnO structure to the spherical shape of AZO samples. The UV–Vis spectroscopic studies showed that Al was incorporated into ZnO lattice as Al
3+
due to the decreasing optical band gap of nanoparticles. The gas sensing responses of ZnO and AZO nanoparticles have been studied at optimum temperature with a low concentration of ammonia gas. The sensing studies revealed that the response of gas mainly relies on the size of the particles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03808-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6323-0386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-08, Vol.31 (15), p.12579-12585 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2425727935 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Ammonia Characterization and Evaluation of Materials Chemistry and Materials Science Crystallites Doping Gas sensors Materials Science Microstrain Morphology Nanoparticles Optical and Electronic Materials Zinc oxide |
title | Fabrication of Al-doped ZnO nanoparticles and their application as a semiconductor-based gas sensor for the detection of ammonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Al-doped%20ZnO%20nanoparticles%20and%20their%20application%20as%20a%20semiconductor-based%20gas%20sensor%20for%20the%20detection%20of%20ammonia&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Varudkar,%20H.%20A.&rft.date=2020-08-01&rft.volume=31&rft.issue=15&rft.spage=12579&rft.epage=12585&rft.pages=12579-12585&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03808-7&rft_dat=%3Cproquest_cross%3E2425727935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425727935&rft_id=info:pmid/&rfr_iscdi=true |