A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire

The quantification of thermal action is important to the analysis of structural-fire performance of bridges. This study evaluates the parameters for the localized fire model adopted in SFPE Handbook for application to the fire scenario of a tanker truck burning beneath a bridge. Modification is appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire technology 2020-09, Vol.56 (5), p.2059-2087
Hauptverfasser: Wu, Xi-qiang, Huang, Ting, Au, Francis Tat Kwong, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2087
container_issue 5
container_start_page 2059
container_title Fire technology
container_volume 56
creator Wu, Xi-qiang
Huang, Ting
Au, Francis Tat Kwong
Li, Jing
description The quantification of thermal action is important to the analysis of structural-fire performance of bridges. This study evaluates the parameters for the localized fire model adopted in SFPE Handbook for application to the fire scenario of a tanker truck burning beneath a bridge. Modification is applied first to the flame length and then to the distribution of gauge heat flux using the simulation results of various fire models established in Fire Dynamics Simulator considering parameters, including the sectional dimensions of bridge, bridge headroom, truck size and heat release rate. Spatially varied gauge heat flux or adiabatic surface temperature of the bridge can be predicted with this fire model. Implementation of this modified fire model in structural-fire analysis is illustrated with a sequentially coupled thermo-mechanical modelling of a post-tensioned segmental concrete box girder bridge exposed to tanker truck fire. The adiabatic surface temperature calculated from the modified fire model is applied as thermal boundary to the bridge. Simulation results show that, although the global structural responses are seldom influenced by fire, localized damage in concrete and tendon may result. The prestress in tendons near mid-span may be reduced even after the bridge is cooled down to ambient temperature, which may adversely affect its load-carrying capacity. The damage to concrete may also induce localized separation between adjacent segments, possibly affecting the durability of tendons.
doi_str_mv 10.1007/s10694-020-00966-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425727054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425727054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-658953cd37c4a44c2cc9daa8d76a0c3b8afb96b36580b5b064859d1ae617201b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MncSJl20FBakIJMLacmynpI-4jBMJ-HpMi8SO1Szm3HulQ8glg2sGUNwEBkJmCXBIAKQQCT8iI5YXPClBymMyAmB5wkWZnZKzEFYQqULAiOCELrzRm_bLWXrXoqOP3roNbTzSZ3S2NX3bLWn_5ujLgI02jlZuu3Oo-yHCvqFT_0HnLVqHdIqtXboQyXrlTB8be08r3a3jr8LBrPcL5-Sk0ZvgLn7vmLze3Vaz-2TxNH-YTRaJSZnsE5GXMk-NTQuT6Swz3BhptS5tITSYtC51U0tRp5GDOq9BZGUuLdNOsIIDq9MxuTr07tC_Dy70auUH7OKk4hmPbgrIs0jxA2XQh4CuUTtstxo_FQP141Yd3KroVu3dKh5D6SEUItwtHf5V_5P6Bux1e_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425727054</pqid></control><display><type>article</type><title>A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire</title><source>Springer Online Journals Complete</source><creator>Wu, Xi-qiang ; Huang, Ting ; Au, Francis Tat Kwong ; Li, Jing</creator><creatorcontrib>Wu, Xi-qiang ; Huang, Ting ; Au, Francis Tat Kwong ; Li, Jing</creatorcontrib><description>The quantification of thermal action is important to the analysis of structural-fire performance of bridges. This study evaluates the parameters for the localized fire model adopted in SFPE Handbook for application to the fire scenario of a tanker truck burning beneath a bridge. Modification is applied first to the flame length and then to the distribution of gauge heat flux using the simulation results of various fire models established in Fire Dynamics Simulator considering parameters, including the sectional dimensions of bridge, bridge headroom, truck size and heat release rate. Spatially varied gauge heat flux or adiabatic surface temperature of the bridge can be predicted with this fire model. Implementation of this modified fire model in structural-fire analysis is illustrated with a sequentially coupled thermo-mechanical modelling of a post-tensioned segmental concrete box girder bridge exposed to tanker truck fire. The adiabatic surface temperature calculated from the modified fire model is applied as thermal boundary to the bridge. Simulation results show that, although the global structural responses are seldom influenced by fire, localized damage in concrete and tendon may result. The prestress in tendons near mid-span may be reduced even after the bridge is cooled down to ambient temperature, which may adversely affect its load-carrying capacity. The damage to concrete may also induce localized separation between adjacent segments, possibly affecting the durability of tendons.</description><identifier>ISSN: 0015-2684</identifier><identifier>EISSN: 1572-8099</identifier><identifier>DOI: 10.1007/s10694-020-00966-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adiabatic ; Adiabatic flow ; Ambient temperature ; Bearing strength ; Box girder bridges ; Burning ; Carrying capacity ; Characterization and Evaluation of Materials ; Civil Engineering ; Classical Mechanics ; Computer simulation ; Concrete ; Damage localization ; Engineering ; Fire damage ; Heat ; Heat flux ; Heat release rate ; Heat transfer ; Load carrying capacity ; Mathematical models ; Parameters ; Physics ; Post-tensioning ; Prestressing ; Surface temperature ; Tanker trucks ; Tendons</subject><ispartof>Fire technology, 2020-09, Vol.56 (5), p.2059-2087</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-658953cd37c4a44c2cc9daa8d76a0c3b8afb96b36580b5b064859d1ae617201b3</citedby><cites>FETCH-LOGICAL-c319t-658953cd37c4a44c2cc9daa8d76a0c3b8afb96b36580b5b064859d1ae617201b3</cites><orcidid>0000-0002-2163-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10694-020-00966-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10694-020-00966-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wu, Xi-qiang</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Au, Francis Tat Kwong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><title>A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire</title><title>Fire technology</title><addtitle>Fire Technol</addtitle><description>The quantification of thermal action is important to the analysis of structural-fire performance of bridges. This study evaluates the parameters for the localized fire model adopted in SFPE Handbook for application to the fire scenario of a tanker truck burning beneath a bridge. Modification is applied first to the flame length and then to the distribution of gauge heat flux using the simulation results of various fire models established in Fire Dynamics Simulator considering parameters, including the sectional dimensions of bridge, bridge headroom, truck size and heat release rate. Spatially varied gauge heat flux or adiabatic surface temperature of the bridge can be predicted with this fire model. Implementation of this modified fire model in structural-fire analysis is illustrated with a sequentially coupled thermo-mechanical modelling of a post-tensioned segmental concrete box girder bridge exposed to tanker truck fire. The adiabatic surface temperature calculated from the modified fire model is applied as thermal boundary to the bridge. Simulation results show that, although the global structural responses are seldom influenced by fire, localized damage in concrete and tendon may result. The prestress in tendons near mid-span may be reduced even after the bridge is cooled down to ambient temperature, which may adversely affect its load-carrying capacity. The damage to concrete may also induce localized separation between adjacent segments, possibly affecting the durability of tendons.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Ambient temperature</subject><subject>Bearing strength</subject><subject>Box girder bridges</subject><subject>Burning</subject><subject>Carrying capacity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Concrete</subject><subject>Damage localization</subject><subject>Engineering</subject><subject>Fire damage</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat release rate</subject><subject>Heat transfer</subject><subject>Load carrying capacity</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Physics</subject><subject>Post-tensioning</subject><subject>Prestressing</subject><subject>Surface temperature</subject><subject>Tanker trucks</subject><subject>Tendons</subject><issn>0015-2684</issn><issn>1572-8099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MncSJl20FBakIJMLacmynpI-4jBMJ-HpMi8SO1Szm3HulQ8glg2sGUNwEBkJmCXBIAKQQCT8iI5YXPClBymMyAmB5wkWZnZKzEFYQqULAiOCELrzRm_bLWXrXoqOP3roNbTzSZ3S2NX3bLWn_5ujLgI02jlZuu3Oo-yHCvqFT_0HnLVqHdIqtXboQyXrlTB8be08r3a3jr8LBrPcL5-Sk0ZvgLn7vmLze3Vaz-2TxNH-YTRaJSZnsE5GXMk-NTQuT6Swz3BhptS5tITSYtC51U0tRp5GDOq9BZGUuLdNOsIIDq9MxuTr07tC_Dy70auUH7OKk4hmPbgrIs0jxA2XQh4CuUTtstxo_FQP141Yd3KroVu3dKh5D6SEUItwtHf5V_5P6Bux1e_E</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Xi-qiang</creator><creator>Huang, Ting</creator><creator>Au, Francis Tat Kwong</creator><creator>Li, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7T2</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-2163-3531</orcidid></search><sort><creationdate>20200901</creationdate><title>A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire</title><author>Wu, Xi-qiang ; Huang, Ting ; Au, Francis Tat Kwong ; Li, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-658953cd37c4a44c2cc9daa8d76a0c3b8afb96b36580b5b064859d1ae617201b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Ambient temperature</topic><topic>Bearing strength</topic><topic>Box girder bridges</topic><topic>Burning</topic><topic>Carrying capacity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Concrete</topic><topic>Damage localization</topic><topic>Engineering</topic><topic>Fire damage</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat release rate</topic><topic>Heat transfer</topic><topic>Load carrying capacity</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Physics</topic><topic>Post-tensioning</topic><topic>Prestressing</topic><topic>Surface temperature</topic><topic>Tanker trucks</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xi-qiang</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Au, Francis Tat Kwong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>ABI/INFORM Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fire technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xi-qiang</au><au>Huang, Ting</au><au>Au, Francis Tat Kwong</au><au>Li, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire</atitle><jtitle>Fire technology</jtitle><stitle>Fire Technol</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>2059</spage><epage>2087</epage><pages>2059-2087</pages><issn>0015-2684</issn><eissn>1572-8099</eissn><abstract>The quantification of thermal action is important to the analysis of structural-fire performance of bridges. This study evaluates the parameters for the localized fire model adopted in SFPE Handbook for application to the fire scenario of a tanker truck burning beneath a bridge. Modification is applied first to the flame length and then to the distribution of gauge heat flux using the simulation results of various fire models established in Fire Dynamics Simulator considering parameters, including the sectional dimensions of bridge, bridge headroom, truck size and heat release rate. Spatially varied gauge heat flux or adiabatic surface temperature of the bridge can be predicted with this fire model. Implementation of this modified fire model in structural-fire analysis is illustrated with a sequentially coupled thermo-mechanical modelling of a post-tensioned segmental concrete box girder bridge exposed to tanker truck fire. The adiabatic surface temperature calculated from the modified fire model is applied as thermal boundary to the bridge. Simulation results show that, although the global structural responses are seldom influenced by fire, localized damage in concrete and tendon may result. The prestress in tendons near mid-span may be reduced even after the bridge is cooled down to ambient temperature, which may adversely affect its load-carrying capacity. The damage to concrete may also induce localized separation between adjacent segments, possibly affecting the durability of tendons.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10694-020-00966-2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-2163-3531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-2684
ispartof Fire technology, 2020-09, Vol.56 (5), p.2059-2087
issn 0015-2684
1572-8099
language eng
recordid cdi_proquest_journals_2425727054
source Springer Online Journals Complete
subjects Adiabatic
Adiabatic flow
Ambient temperature
Bearing strength
Box girder bridges
Burning
Carrying capacity
Characterization and Evaluation of Materials
Civil Engineering
Classical Mechanics
Computer simulation
Concrete
Damage localization
Engineering
Fire damage
Heat
Heat flux
Heat release rate
Heat transfer
Load carrying capacity
Mathematical models
Parameters
Physics
Post-tensioning
Prestressing
Surface temperature
Tanker trucks
Tendons
title A Localized Fire Model for Predicting the Surface Temperature of Box Girder Bridges Subjected to Tanker Truck Fire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Localized%20Fire%20Model%20for%20Predicting%20the%20Surface%20Temperature%20of%20Box%20Girder%20Bridges%20Subjected%20to%20Tanker%20Truck%20Fire&rft.jtitle=Fire%20technology&rft.au=Wu,%20Xi-qiang&rft.date=2020-09-01&rft.volume=56&rft.issue=5&rft.spage=2059&rft.epage=2087&rft.pages=2059-2087&rft.issn=0015-2684&rft.eissn=1572-8099&rft_id=info:doi/10.1007/s10694-020-00966-2&rft_dat=%3Cproquest_cross%3E2425727054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425727054&rft_id=info:pmid/&rfr_iscdi=true