Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace

The heat transfer processes and the molten metal bath kinetics of the electric arc furnace are governed by the changes in the arc length and voltage. Thus, information on the electric arc behavior with respect to the voltage is important for accurate computation of the furnace processes and adjustme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2020-08, Vol.51 (4), p.1646-1655
Hauptverfasser: Pauna, H., Willms, T., Aula, M., Echterhof, T., Huttula, M., Fabritius, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1655
container_issue 4
container_start_page 1646
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 51
creator Pauna, H.
Willms, T.
Aula, M.
Echterhof, T.
Huttula, M.
Fabritius, T.
description The heat transfer processes and the molten metal bath kinetics of the electric arc furnace are governed by the changes in the arc length and voltage. Thus, information on the electric arc behavior with respect to the voltage is important for accurate computation of the furnace processes and adjustment of the industrial furnace parameters. In this work, the length-voltage characteristics of electric arcs have been studied in a pilot-scale AC electric arc furnace with image analysis, electrical data from the furnace, and slag composition. The arc length was determined with image analysis and the relation between the arc length and voltage from test data. The relation between arc length and voltage was found to be non-linear and dependent on the slag composition. The voltage gradients of the arcs were evaluated as a function of arc length and sum of anode and cathode voltage drops resulting in a reciprocal relation. Furthermore, the electrical conductivity of the arc plasma with respect to arc length was estimated.
doi_str_mv 10.1007/s11663-020-01859-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425726325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425726325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-98734154fd8f9c8a2efc5b645d13f66365c44165b3edc1f60f569f43c1c15eac3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAczRvs8l2j2VpVSgo-Oca0rdJm7Lu1iQV7Kd36wrixdObw8ww70fIJfBr4Ly4iQBKCcYzzjhMZMn2R2QEMhcMSlDHveaFYFKBPCVnMW4456osxYjYWWMxBY90GpAubLtKa_baNcmsLDVtTauurXeY_IdPn7Ram2Aw2eBj8hipb6mhj77pEntC01g6reifwvkutAbtOTlxpon24ueOyct89lzdscXD7X01XTAUSiRWTgqR96tdPXElTkxmHcqlymUNwvX_KYl5Dkouha0RnOJOqtLlAgFBWoNiTK6G3m3o3nc2Jr3pDguaqLM8k0WmRCZ7Vza4MHQxBuv0Nvg3Ez41cH3AqQecusepv3HqfR8SQyj25nZlw2_1P6kvaT54PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425726325</pqid></control><display><type>article</type><title>Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace</title><source>SpringerNature Journals</source><creator>Pauna, H. ; Willms, T. ; Aula, M. ; Echterhof, T. ; Huttula, M. ; Fabritius, T.</creator><creatorcontrib>Pauna, H. ; Willms, T. ; Aula, M. ; Echterhof, T. ; Huttula, M. ; Fabritius, T.</creatorcontrib><description>The heat transfer processes and the molten metal bath kinetics of the electric arc furnace are governed by the changes in the arc length and voltage. Thus, information on the electric arc behavior with respect to the voltage is important for accurate computation of the furnace processes and adjustment of the industrial furnace parameters. In this work, the length-voltage characteristics of electric arcs have been studied in a pilot-scale AC electric arc furnace with image analysis, electrical data from the furnace, and slag composition. The arc length was determined with image analysis and the relation between the arc length and voltage from test data. The relation between arc length and voltage was found to be non-linear and dependent on the slag composition. The voltage gradients of the arcs were evaluated as a function of arc length and sum of anode and cathode voltage drops resulting in a reciprocal relation. Furthermore, the electrical conductivity of the arc plasma with respect to arc length was estimated.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-020-01859-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition ; Electric arc furnaces ; Electric arcs ; Electric potential ; Electrical resistivity ; Furnaces ; Image analysis ; Liquid metals ; Materials Science ; Metallic Materials ; Nanotechnology ; Plasma arc heating ; Slag ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Voltage</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2020-08, Vol.51 (4), p.1646-1655</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-98734154fd8f9c8a2efc5b645d13f66365c44165b3edc1f60f569f43c1c15eac3</citedby><cites>FETCH-LOGICAL-c363t-98734154fd8f9c8a2efc5b645d13f66365c44165b3edc1f60f569f43c1c15eac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-020-01859-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-020-01859-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pauna, H.</creatorcontrib><creatorcontrib>Willms, T.</creatorcontrib><creatorcontrib>Aula, M.</creatorcontrib><creatorcontrib>Echterhof, T.</creatorcontrib><creatorcontrib>Huttula, M.</creatorcontrib><creatorcontrib>Fabritius, T.</creatorcontrib><title>Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The heat transfer processes and the molten metal bath kinetics of the electric arc furnace are governed by the changes in the arc length and voltage. Thus, information on the electric arc behavior with respect to the voltage is important for accurate computation of the furnace processes and adjustment of the industrial furnace parameters. In this work, the length-voltage characteristics of electric arcs have been studied in a pilot-scale AC electric arc furnace with image analysis, electrical data from the furnace, and slag composition. The arc length was determined with image analysis and the relation between the arc length and voltage from test data. The relation between arc length and voltage was found to be non-linear and dependent on the slag composition. The voltage gradients of the arcs were evaluated as a function of arc length and sum of anode and cathode voltage drops resulting in a reciprocal relation. Furthermore, the electrical conductivity of the arc plasma with respect to arc length was estimated.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Electric arc furnaces</subject><subject>Electric arcs</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Furnaces</subject><subject>Image analysis</subject><subject>Liquid metals</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Plasma arc heating</subject><subject>Slag</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Voltage</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwFPAczRvs8l2j2VpVSgo-Oca0rdJm7Lu1iQV7Kd36wrixdObw8ww70fIJfBr4Ly4iQBKCcYzzjhMZMn2R2QEMhcMSlDHveaFYFKBPCVnMW4456osxYjYWWMxBY90GpAubLtKa_baNcmsLDVtTauurXeY_IdPn7Ram2Aw2eBj8hipb6mhj77pEntC01g6reifwvkutAbtOTlxpon24ueOyct89lzdscXD7X01XTAUSiRWTgqR96tdPXElTkxmHcqlymUNwvX_KYl5Dkouha0RnOJOqtLlAgFBWoNiTK6G3m3o3nc2Jr3pDguaqLM8k0WmRCZ7Vza4MHQxBuv0Nvg3Ez41cH3AqQecusepv3HqfR8SQyj25nZlw2_1P6kvaT54PA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Pauna, H.</creator><creator>Willms, T.</creator><creator>Aula, M.</creator><creator>Echterhof, T.</creator><creator>Huttula, M.</creator><creator>Fabritius, T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200801</creationdate><title>Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace</title><author>Pauna, H. ; Willms, T. ; Aula, M. ; Echterhof, T. ; Huttula, M. ; Fabritius, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-98734154fd8f9c8a2efc5b645d13f66365c44165b3edc1f60f569f43c1c15eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Electric arc furnaces</topic><topic>Electric arcs</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Furnaces</topic><topic>Image analysis</topic><topic>Liquid metals</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Plasma arc heating</topic><topic>Slag</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauna, H.</creatorcontrib><creatorcontrib>Willms, T.</creatorcontrib><creatorcontrib>Aula, M.</creatorcontrib><creatorcontrib>Echterhof, T.</creatorcontrib><creatorcontrib>Huttula, M.</creatorcontrib><creatorcontrib>Fabritius, T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauna, H.</au><au>Willms, T.</au><au>Aula, M.</au><au>Echterhof, T.</au><au>Huttula, M.</au><au>Fabritius, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>51</volume><issue>4</issue><spage>1646</spage><epage>1655</epage><pages>1646-1655</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>The heat transfer processes and the molten metal bath kinetics of the electric arc furnace are governed by the changes in the arc length and voltage. Thus, information on the electric arc behavior with respect to the voltage is important for accurate computation of the furnace processes and adjustment of the industrial furnace parameters. In this work, the length-voltage characteristics of electric arcs have been studied in a pilot-scale AC electric arc furnace with image analysis, electrical data from the furnace, and slag composition. The arc length was determined with image analysis and the relation between the arc length and voltage from test data. The relation between arc length and voltage was found to be non-linear and dependent on the slag composition. The voltage gradients of the arcs were evaluated as a function of arc length and sum of anode and cathode voltage drops resulting in a reciprocal relation. Furthermore, the electrical conductivity of the arc plasma with respect to arc length was estimated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-020-01859-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2020-08, Vol.51 (4), p.1646-1655
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_2425726325
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Composition
Electric arc furnaces
Electric arcs
Electric potential
Electrical resistivity
Furnaces
Image analysis
Liquid metals
Materials Science
Metallic Materials
Nanotechnology
Plasma arc heating
Slag
Structural Materials
Surfaces and Interfaces
Thin Films
Voltage
title Electric Arc Length-Voltage and Conductivity Characteristics in a Pilot-Scale AC Electric Arc Furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Arc%20Length-Voltage%20and%20Conductivity%20Characteristics%20in%20a%20Pilot-Scale%20AC%20Electric%20Arc%20Furnace&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Pauna,%20H.&rft.date=2020-08-01&rft.volume=51&rft.issue=4&rft.spage=1646&rft.epage=1655&rft.pages=1646-1655&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-020-01859-z&rft_dat=%3Cproquest_cross%3E2425726325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425726325&rft_id=info:pmid/&rfr_iscdi=true