Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models
Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2020-05, Vol.478, p.71-81 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | |
container_start_page | 71 |
container_title | Cancer letters |
container_volume | 478 |
creator | Park, Jung Hwa Kim, Min Jae Kim, Woo Jean Kwon, Ki-Dong Ha, Ki-Tae Choi, Byung Tae Lee, Seo-Yeon Shin, Hwa Kyoung |
description | Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition.
•Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo. |
doi_str_mv | 10.1016/j.canlet.2020.03.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425691390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383520301282</els_id><sourcerecordid>2425691390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EokvhGyBkiXPC-N96c0FCLZRKlbjA2XLsya5XiR3sZKue-Oq4bOHIYTyH-b15nkfIWwYtA7b9cGydjSMuLQcOLYgWoHtGNmyneaO7HTwnGxAgG7ET6oK8KuUIAEpq9ZJcCM60kLrbkF-3JY0hesx2tG5JEWlZ5zljKVjoYZ1spPsxpH60ZUmTpfuc7pcDtdHX2oe0xxgcrdJwCssDDZGKazoFl9MwrsHXmTuE-Q9fZ6dwSnRKa8H6ehzLa_JisGPBN0_9kvz48vn71dfm7tvN7dWnu8aJDpZG94MV3G-9RNGDhAE7dE6BZHrney8HLqyzTA1Cq3rwwJzw3CstQaDceiUuyfvz3jmnnyuWxRzTmmO1NFxyte1Y9amUPFP1-6VkHMycw2Tzg2FgHlM3R3NO3TymbkCYmnqVvXtavvYT-n-ivzFX4OMZqBfjKWA2xQWMDn3I6BbjU_i_w28g25ev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425691390</pqid></control><display><type>article</type><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</creator><creatorcontrib>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</creatorcontrib><description>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition.
•Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2020.03.009</identifier><identifier>PMID: 32173479</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>3D microfluidic chip ; Angiogenesis ; Angiogenesis Inhibitors - administration & dosage ; Angiogenesis Inhibitors - pharmacology ; Animal models ; Animals ; Antibodies ; Apoptosis ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Brain cancer ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumor ; Brain tumors ; Cell adhesion & migration ; Cell Hypoxia - drug effects ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Down-Regulation ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Humans ; Hypoxia ; Hypoxia-inducible factor ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Lab-On-A-Chip Devices ; Laboratory animals ; Lung cancer ; Male ; Mice ; Microfluidics ; Microvasculature ; mRNA ; Phosphorylation ; Sesquiterpenes - administration & dosage ; Sesquiterpenes - pharmacology ; Signal Transduction - drug effects ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cancer letters, 2020-05, Vol.478, p.71-81</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</citedby><cites>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304383520301282$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32173479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Min Jae</creatorcontrib><creatorcontrib>Kim, Woo Jean</creatorcontrib><creatorcontrib>Kwon, Ki-Dong</creatorcontrib><creatorcontrib>Ha, Ki-Tae</creatorcontrib><creatorcontrib>Choi, Byung Tae</creatorcontrib><creatorcontrib>Lee, Seo-Yeon</creatorcontrib><creatorcontrib>Shin, Hwa Kyoung</creatorcontrib><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition.
•Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</description><subject>3D microfluidic chip</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - administration & dosage</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumor</subject><subject>Brain tumors</subject><subject>Cell adhesion & migration</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Down-Regulation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laboratory animals</subject><subject>Lung cancer</subject><subject>Male</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Microvasculature</subject><subject>mRNA</subject><subject>Phosphorylation</subject><subject>Sesquiterpenes - administration & dosage</subject><subject>Sesquiterpenes - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0EokvhGyBkiXPC-N96c0FCLZRKlbjA2XLsya5XiR3sZKue-Oq4bOHIYTyH-b15nkfIWwYtA7b9cGydjSMuLQcOLYgWoHtGNmyneaO7HTwnGxAgG7ET6oK8KuUIAEpq9ZJcCM60kLrbkF-3JY0hesx2tG5JEWlZ5zljKVjoYZ1spPsxpH60ZUmTpfuc7pcDtdHX2oe0xxgcrdJwCssDDZGKazoFl9MwrsHXmTuE-Q9fZ6dwSnRKa8H6ehzLa_JisGPBN0_9kvz48vn71dfm7tvN7dWnu8aJDpZG94MV3G-9RNGDhAE7dE6BZHrney8HLqyzTA1Cq3rwwJzw3CstQaDceiUuyfvz3jmnnyuWxRzTmmO1NFxyte1Y9amUPFP1-6VkHMycw2Tzg2FgHlM3R3NO3TymbkCYmnqVvXtavvYT-n-ivzFX4OMZqBfjKWA2xQWMDn3I6BbjU_i_w28g25ev</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Park, Jung Hwa</creator><creator>Kim, Min Jae</creator><creator>Kim, Woo Jean</creator><creator>Kwon, Ki-Dong</creator><creator>Ha, Ki-Tae</creator><creator>Choi, Byung Tae</creator><creator>Lee, Seo-Yeon</creator><creator>Shin, Hwa Kyoung</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20200528</creationdate><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><author>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D microfluidic chip</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - administration & dosage</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumor</topic><topic>Brain tumors</topic><topic>Cell adhesion & migration</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Down-Regulation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laboratory animals</topic><topic>Lung cancer</topic><topic>Male</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Microvasculature</topic><topic>mRNA</topic><topic>Phosphorylation</topic><topic>Sesquiterpenes - administration & dosage</topic><topic>Sesquiterpenes - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Min Jae</creatorcontrib><creatorcontrib>Kim, Woo Jean</creatorcontrib><creatorcontrib>Kwon, Ki-Dong</creatorcontrib><creatorcontrib>Ha, Ki-Tae</creatorcontrib><creatorcontrib>Choi, Byung Tae</creatorcontrib><creatorcontrib>Lee, Seo-Yeon</creatorcontrib><creatorcontrib>Shin, Hwa Kyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jung Hwa</au><au>Kim, Min Jae</au><au>Kim, Woo Jean</au><au>Kwon, Ki-Dong</au><au>Ha, Ki-Tae</au><au>Choi, Byung Tae</au><au>Lee, Seo-Yeon</au><au>Shin, Hwa Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2020-05-28</date><risdate>2020</risdate><volume>478</volume><spage>71</spage><epage>81</epage><pages>71-81</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition.
•Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>32173479</pmid><doi>10.1016/j.canlet.2020.03.009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3835 |
ispartof | Cancer letters, 2020-05, Vol.478, p.71-81 |
issn | 0304-3835 1872-7980 |
language | eng |
recordid | cdi_proquest_journals_2425691390 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 3D microfluidic chip Angiogenesis Angiogenesis Inhibitors - administration & dosage Angiogenesis Inhibitors - pharmacology Animal models Animals Antibodies Apoptosis Basic Helix-Loop-Helix Transcription Factors - metabolism Brain cancer Brain Neoplasms - drug therapy Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain tumor Brain tumors Cell adhesion & migration Cell Hypoxia - drug effects Cell Line, Tumor Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Down-Regulation Endothelial cells Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - metabolism Gene Expression Regulation, Neoplastic - drug effects Glioblastoma Glioblastoma - drug therapy Glioblastoma - genetics Glioblastoma - metabolism Humans Hypoxia Hypoxia-inducible factor Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-inducible factor 1a Lab-On-A-Chip Devices Laboratory animals Lung cancer Male Mice Microfluidics Microvasculature mRNA Phosphorylation Sesquiterpenes - administration & dosage Sesquiterpenes - pharmacology Signal Transduction - drug effects Tumors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Xenograft Model Antitumor Assays Xenografts |
title | Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolinderalactone%20suppresses%20human%20glioblastoma%20growth%20and%20angiogenic%20activity%20in%203D%20microfluidic%20chip%20and%20in%20vivo%20mouse%20models&rft.jtitle=Cancer%20letters&rft.au=Park,%20Jung%20Hwa&rft.date=2020-05-28&rft.volume=478&rft.spage=71&rft.epage=81&rft.pages=71-81&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2020.03.009&rft_dat=%3Cproquest_cross%3E2425691390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425691390&rft_id=info:pmid/32173479&rft_els_id=S0304383520301282&rfr_iscdi=true |