Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models

Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2020-05, Vol.478, p.71-81
Hauptverfasser: Park, Jung Hwa, Kim, Min Jae, Kim, Woo Jean, Kwon, Ki-Dong, Ha, Ki-Tae, Choi, Byung Tae, Lee, Seo-Yeon, Shin, Hwa Kyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 71
container_title Cancer letters
container_volume 478
creator Park, Jung Hwa
Kim, Min Jae
Kim, Woo Jean
Kwon, Ki-Dong
Ha, Ki-Tae
Choi, Byung Tae
Lee, Seo-Yeon
Shin, Hwa Kyoung
description Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition. •Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.
doi_str_mv 10.1016/j.canlet.2020.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425691390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383520301282</els_id><sourcerecordid>2425691390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EokvhGyBkiXPC-N96c0FCLZRKlbjA2XLsya5XiR3sZKue-Oq4bOHIYTyH-b15nkfIWwYtA7b9cGydjSMuLQcOLYgWoHtGNmyneaO7HTwnGxAgG7ET6oK8KuUIAEpq9ZJcCM60kLrbkF-3JY0hesx2tG5JEWlZ5zljKVjoYZ1spPsxpH60ZUmTpfuc7pcDtdHX2oe0xxgcrdJwCssDDZGKazoFl9MwrsHXmTuE-Q9fZ6dwSnRKa8H6ehzLa_JisGPBN0_9kvz48vn71dfm7tvN7dWnu8aJDpZG94MV3G-9RNGDhAE7dE6BZHrney8HLqyzTA1Cq3rwwJzw3CstQaDceiUuyfvz3jmnnyuWxRzTmmO1NFxyte1Y9amUPFP1-6VkHMycw2Tzg2FgHlM3R3NO3TymbkCYmnqVvXtavvYT-n-ivzFX4OMZqBfjKWA2xQWMDn3I6BbjU_i_w28g25ev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425691390</pqid></control><display><type>article</type><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</creator><creatorcontrib>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</creatorcontrib><description>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition. •Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2020.03.009</identifier><identifier>PMID: 32173479</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>3D microfluidic chip ; Angiogenesis ; Angiogenesis Inhibitors - administration &amp; dosage ; Angiogenesis Inhibitors - pharmacology ; Animal models ; Animals ; Antibodies ; Apoptosis ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Brain cancer ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumor ; Brain tumors ; Cell adhesion &amp; migration ; Cell Hypoxia - drug effects ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Down-Regulation ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Humans ; Hypoxia ; Hypoxia-inducible factor ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Lab-On-A-Chip Devices ; Laboratory animals ; Lung cancer ; Male ; Mice ; Microfluidics ; Microvasculature ; mRNA ; Phosphorylation ; Sesquiterpenes - administration &amp; dosage ; Sesquiterpenes - pharmacology ; Signal Transduction - drug effects ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cancer letters, 2020-05, Vol.478, p.71-81</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</citedby><cites>FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304383520301282$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32173479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Min Jae</creatorcontrib><creatorcontrib>Kim, Woo Jean</creatorcontrib><creatorcontrib>Kwon, Ki-Dong</creatorcontrib><creatorcontrib>Ha, Ki-Tae</creatorcontrib><creatorcontrib>Choi, Byung Tae</creatorcontrib><creatorcontrib>Lee, Seo-Yeon</creatorcontrib><creatorcontrib>Shin, Hwa Kyoung</creatorcontrib><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition. •Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</description><subject>3D microfluidic chip</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - administration &amp; dosage</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumor</subject><subject>Brain tumors</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Down-Regulation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laboratory animals</subject><subject>Lung cancer</subject><subject>Male</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Microvasculature</subject><subject>mRNA</subject><subject>Phosphorylation</subject><subject>Sesquiterpenes - administration &amp; dosage</subject><subject>Sesquiterpenes - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0EokvhGyBkiXPC-N96c0FCLZRKlbjA2XLsya5XiR3sZKue-Oq4bOHIYTyH-b15nkfIWwYtA7b9cGydjSMuLQcOLYgWoHtGNmyneaO7HTwnGxAgG7ET6oK8KuUIAEpq9ZJcCM60kLrbkF-3JY0hesx2tG5JEWlZ5zljKVjoYZ1spPsxpH60ZUmTpfuc7pcDtdHX2oe0xxgcrdJwCssDDZGKazoFl9MwrsHXmTuE-Q9fZ6dwSnRKa8H6ehzLa_JisGPBN0_9kvz48vn71dfm7tvN7dWnu8aJDpZG94MV3G-9RNGDhAE7dE6BZHrney8HLqyzTA1Cq3rwwJzw3CstQaDceiUuyfvz3jmnnyuWxRzTmmO1NFxyte1Y9amUPFP1-6VkHMycw2Tzg2FgHlM3R3NO3TymbkCYmnqVvXtavvYT-n-ivzFX4OMZqBfjKWA2xQWMDn3I6BbjU_i_w28g25ev</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Park, Jung Hwa</creator><creator>Kim, Min Jae</creator><creator>Kim, Woo Jean</creator><creator>Kwon, Ki-Dong</creator><creator>Ha, Ki-Tae</creator><creator>Choi, Byung Tae</creator><creator>Lee, Seo-Yeon</creator><creator>Shin, Hwa Kyoung</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20200528</creationdate><title>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</title><author>Park, Jung Hwa ; Kim, Min Jae ; Kim, Woo Jean ; Kwon, Ki-Dong ; Ha, Ki-Tae ; Choi, Byung Tae ; Lee, Seo-Yeon ; Shin, Hwa Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7bfa32d6d4e3b040fe9ecc504178dbd4f23aca15f375383f1c3d2d57403e46d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D microfluidic chip</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - administration &amp; dosage</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumor</topic><topic>Brain tumors</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Down-Regulation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laboratory animals</topic><topic>Lung cancer</topic><topic>Male</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Microvasculature</topic><topic>mRNA</topic><topic>Phosphorylation</topic><topic>Sesquiterpenes - administration &amp; dosage</topic><topic>Sesquiterpenes - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Min Jae</creatorcontrib><creatorcontrib>Kim, Woo Jean</creatorcontrib><creatorcontrib>Kwon, Ki-Dong</creatorcontrib><creatorcontrib>Ha, Ki-Tae</creatorcontrib><creatorcontrib>Choi, Byung Tae</creatorcontrib><creatorcontrib>Lee, Seo-Yeon</creatorcontrib><creatorcontrib>Shin, Hwa Kyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jung Hwa</au><au>Kim, Min Jae</au><au>Kim, Woo Jean</au><au>Kwon, Ki-Dong</au><au>Ha, Ki-Tae</au><au>Choi, Byung Tae</au><au>Lee, Seo-Yeon</au><au>Shin, Hwa Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2020-05-28</date><risdate>2020</risdate><volume>478</volume><spage>71</spage><epage>81</epage><pages>71-81</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition. •Isolinderalactone reduces tumor growth and tumor vessels in vivo.•Isolinderalactone inhibits VEGF expression in the glioblastoma cell line U-87.•Isolinderalactone inhibits proliferation, migration, tube formation, and 3D sprouting of endothelial cells.•Isolinderalactone reduces HIF-1α, HIF-2α in U-87 and tyrosine phosphorylation of VEGFR2 in endothelial cells.•Isolinderalactone inhibits VEGF-triggered angiogenesis in vivo.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>32173479</pmid><doi>10.1016/j.canlet.2020.03.009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2020-05, Vol.478, p.71-81
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_journals_2425691390
source MEDLINE; Elsevier ScienceDirect Journals
subjects 3D microfluidic chip
Angiogenesis
Angiogenesis Inhibitors - administration & dosage
Angiogenesis Inhibitors - pharmacology
Animal models
Animals
Antibodies
Apoptosis
Basic Helix-Loop-Helix Transcription Factors - metabolism
Brain cancer
Brain Neoplasms - drug therapy
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain tumor
Brain tumors
Cell adhesion & migration
Cell Hypoxia - drug effects
Cell Line, Tumor
Cell proliferation
Cell Proliferation - drug effects
Cell Survival - drug effects
Down-Regulation
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioblastoma - metabolism
Humans
Hypoxia
Hypoxia-inducible factor
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-inducible factor 1a
Lab-On-A-Chip Devices
Laboratory animals
Lung cancer
Male
Mice
Microfluidics
Microvasculature
mRNA
Phosphorylation
Sesquiterpenes - administration & dosage
Sesquiterpenes - pharmacology
Signal Transduction - drug effects
Tumors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Xenograft Model Antitumor Assays
Xenografts
title Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolinderalactone%20suppresses%20human%20glioblastoma%20growth%20and%20angiogenic%20activity%20in%203D%20microfluidic%20chip%20and%20in%20vivo%20mouse%20models&rft.jtitle=Cancer%20letters&rft.au=Park,%20Jung%20Hwa&rft.date=2020-05-28&rft.volume=478&rft.spage=71&rft.epage=81&rft.pages=71-81&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2020.03.009&rft_dat=%3Cproquest_cross%3E2425691390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425691390&rft_id=info:pmid/32173479&rft_els_id=S0304383520301282&rfr_iscdi=true