Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst
In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared f...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-07, Vol.92 (13), p.8965-8973 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8973 |
---|---|
container_issue | 13 |
container_start_page | 8965 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Mutharani, Bhuvanenthiran Ranganathan, Palraj Chen, Tse-Wei Chen, Shen-Ming vinoth kumar, Jeyaraj |
description | In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma. |
doi_str_mv | 10.1021/acs.analchem.0c00958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2425627084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425627084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</originalsourceid><addsrcrecordid>eNqNkV2P1CAUhonRuOPqPzCGxEvTEQq0cKnNuppssman9w2F0wxrp1Sg--GP8bfKOLNzabwCDs97vl6E3lKypqSkH7WJaz3p0WxhtyaGECXkM7SioiRFJWX5HK0IIawoa0LO0KsYbwmhlNDqJTpjJWdVpegK_W63EHY-wB2E6PoR8ObeJbMd3Q_AFyOYFLzRSY-PyRl8A3YxyfkJ-wG37peenHUT4M86gsU5rPFl0PMWcuz6wVnALaRcIH9uktstoytuIM5-iu4uV9rpkPBmCYM2-bXMsw8po98tbv6WjOk1ejHoMcKb43mO2i8XbfO1uLq-_NZ8uio0q6tUUGUZL2vKpBBQEa562RNgSlohjRgGZZSyoiJyqAWjTNWmV0xaQ01f91yyc_T-kHYO_ucCMXW3fgl5ubEreSmqvEPJM8UPlAk-xgBDNweXZ3jsKOn2nnTZk-7Jk-7oSZa9OyZf-h3Yk-jJhAx8OAD30PshGgeTgROWTRRcCk7LfONVpuX_041Leu9X45cpZSk5SPd9nib8Z_N_AEs2vro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425627084</pqid></control><display><type>article</type><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</creator><creatorcontrib>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</creatorcontrib><description>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c00958</identifier><identifier>PMID: 32436691</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Biodegradability ; Biodegradation ; Blood plasma ; Caprolactam - analogs & derivatives ; Caprolactam - chemistry ; Catalysis ; Catalysts ; Chemical reduction ; Chemistry ; Chemistry, Analytical ; Clonidine - analogs & derivatives ; Clonidine - analysis ; Clonidine - chemistry ; Electrochemical analysis ; Electrochemical Techniques - methods ; Electrochemistry ; Electrodes ; Electron transfer ; Graphene ; Graphite - chemistry ; Hydrophilicity ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Limit of Detection ; N-vinylcaprolactam ; Nanocomposites - chemistry ; Palladium ; Palladium - chemistry ; Pharmacokinetics ; Physical Sciences ; Polymers - chemistry ; Reproducibility of Results ; Science & Technology ; Sensitivity enhancement ; Surface Properties ; Synergistic effect ; Temperature ; Tethering ; Wettability</subject><ispartof>Analytical chemistry (Washington), 2020-07, Vol.92 (13), p.8965-8973</ispartof><rights>Copyright American Chemical Society Jul 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548541200046</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</citedby><cites>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</cites><orcidid>0000-0003-4264-7913 ; 0000-0002-9305-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c00958$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c00958$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32436691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mutharani, Bhuvanenthiran</creatorcontrib><creatorcontrib>Ranganathan, Palraj</creatorcontrib><creatorcontrib>Chen, Tse-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>vinoth kumar, Jeyaraj</creatorcontrib><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal. Chem</addtitle><description>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Blood plasma</subject><subject>Caprolactam - analogs & derivatives</subject><subject>Caprolactam - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Clonidine - analogs & derivatives</subject><subject>Clonidine - analysis</subject><subject>Clonidine - chemistry</subject><subject>Electrochemical analysis</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hydrophilicity</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Limit of Detection</subject><subject>N-vinylcaprolactam</subject><subject>Nanocomposites - chemistry</subject><subject>Palladium</subject><subject>Palladium - chemistry</subject><subject>Pharmacokinetics</subject><subject>Physical Sciences</subject><subject>Polymers - chemistry</subject><subject>Reproducibility of Results</subject><subject>Science & Technology</subject><subject>Sensitivity enhancement</subject><subject>Surface Properties</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Tethering</subject><subject>Wettability</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV2P1CAUhonRuOPqPzCGxEvTEQq0cKnNuppssman9w2F0wxrp1Sg--GP8bfKOLNzabwCDs97vl6E3lKypqSkH7WJaz3p0WxhtyaGECXkM7SioiRFJWX5HK0IIawoa0LO0KsYbwmhlNDqJTpjJWdVpegK_W63EHY-wB2E6PoR8ObeJbMd3Q_AFyOYFLzRSY-PyRl8A3YxyfkJ-wG37peenHUT4M86gsU5rPFl0PMWcuz6wVnALaRcIH9uktstoytuIM5-iu4uV9rpkPBmCYM2-bXMsw8po98tbv6WjOk1ejHoMcKb43mO2i8XbfO1uLq-_NZ8uio0q6tUUGUZL2vKpBBQEa562RNgSlohjRgGZZSyoiJyqAWjTNWmV0xaQ01f91yyc_T-kHYO_ucCMXW3fgl5ubEreSmqvEPJM8UPlAk-xgBDNweXZ3jsKOn2nnTZk-7Jk-7oSZa9OyZf-h3Yk-jJhAx8OAD30PshGgeTgROWTRRcCk7LfONVpuX_041Leu9X45cpZSk5SPd9nib8Z_N_AEs2vro</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Mutharani, Bhuvanenthiran</creator><creator>Ranganathan, Palraj</creator><creator>Chen, Tse-Wei</creator><creator>Chen, Shen-Ming</creator><creator>vinoth kumar, Jeyaraj</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4264-7913</orcidid><orcidid>https://orcid.org/0000-0002-9305-8513</orcidid></search><sort><creationdate>20200707</creationdate><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><author>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Blood plasma</topic><topic>Caprolactam - analogs & derivatives</topic><topic>Caprolactam - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Clonidine - analogs & derivatives</topic><topic>Clonidine - analysis</topic><topic>Clonidine - chemistry</topic><topic>Electrochemical analysis</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hydrophilicity</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Limit of Detection</topic><topic>N-vinylcaprolactam</topic><topic>Nanocomposites - chemistry</topic><topic>Palladium</topic><topic>Palladium - chemistry</topic><topic>Pharmacokinetics</topic><topic>Physical Sciences</topic><topic>Polymers - chemistry</topic><topic>Reproducibility of Results</topic><topic>Science & Technology</topic><topic>Sensitivity enhancement</topic><topic>Surface Properties</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Tethering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mutharani, Bhuvanenthiran</creatorcontrib><creatorcontrib>Ranganathan, Palraj</creatorcontrib><creatorcontrib>Chen, Tse-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>vinoth kumar, Jeyaraj</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mutharani, Bhuvanenthiran</au><au>Ranganathan, Palraj</au><au>Chen, Tse-Wei</au><au>Chen, Shen-Ming</au><au>vinoth kumar, Jeyaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal. Chem</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>92</volume><issue>13</issue><spage>8965</spage><epage>8973</epage><pages>8965-8973</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32436691</pmid><doi>10.1021/acs.analchem.0c00958</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4264-7913</orcidid><orcidid>https://orcid.org/0000-0002-9305-8513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-07, Vol.92 (13), p.8965-8973 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2425627084 |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Biodegradability Biodegradation Blood plasma Caprolactam - analogs & derivatives Caprolactam - chemistry Catalysis Catalysts Chemical reduction Chemistry Chemistry, Analytical Clonidine - analogs & derivatives Clonidine - analysis Clonidine - chemistry Electrochemical analysis Electrochemical Techniques - methods Electrochemistry Electrodes Electron transfer Graphene Graphite - chemistry Hydrophilicity Hydrophobic and Hydrophilic Interactions Hydrophobicity Limit of Detection N-vinylcaprolactam Nanocomposites - chemistry Palladium Palladium - chemistry Pharmacokinetics Physical Sciences Polymers - chemistry Reproducibility of Results Science & Technology Sensitivity enhancement Surface Properties Synergistic effect Temperature Tethering Wettability |
title | Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoreversible%20Switchlike%20Electrocatalytic%20Reduction%20of%20Tizanidine%20Based%20on%20a%20Graphene%20Oxide%20Tethered%20Stimuli-Responsive%20Smart%20Surface%20Supported%20Pd%20Catalyst&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mutharani,%20Bhuvanenthiran&rft.date=2020-07-07&rft.volume=92&rft.issue=13&rft.spage=8965&rft.epage=8973&rft.pages=8965-8973&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c00958&rft_dat=%3Cproquest_acs_j%3E2425627084%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425627084&rft_id=info:pmid/32436691&rfr_iscdi=true |