Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst

In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly­(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-07, Vol.92 (13), p.8965-8973
Hauptverfasser: Mutharani, Bhuvanenthiran, Ranganathan, Palraj, Chen, Tse-Wei, Chen, Shen-Ming, vinoth kumar, Jeyaraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8973
container_issue 13
container_start_page 8965
container_title Analytical chemistry (Washington)
container_volume 92
creator Mutharani, Bhuvanenthiran
Ranganathan, Palraj
Chen, Tse-Wei
Chen, Shen-Ming
vinoth kumar, Jeyaraj
description In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly­(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.
doi_str_mv 10.1021/acs.analchem.0c00958
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2425627084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425627084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</originalsourceid><addsrcrecordid>eNqNkV2P1CAUhonRuOPqPzCGxEvTEQq0cKnNuppssman9w2F0wxrp1Sg--GP8bfKOLNzabwCDs97vl6E3lKypqSkH7WJaz3p0WxhtyaGECXkM7SioiRFJWX5HK0IIawoa0LO0KsYbwmhlNDqJTpjJWdVpegK_W63EHY-wB2E6PoR8ObeJbMd3Q_AFyOYFLzRSY-PyRl8A3YxyfkJ-wG37peenHUT4M86gsU5rPFl0PMWcuz6wVnALaRcIH9uktstoytuIM5-iu4uV9rpkPBmCYM2-bXMsw8po98tbv6WjOk1ejHoMcKb43mO2i8XbfO1uLq-_NZ8uio0q6tUUGUZL2vKpBBQEa562RNgSlohjRgGZZSyoiJyqAWjTNWmV0xaQ01f91yyc_T-kHYO_ucCMXW3fgl5ubEreSmqvEPJM8UPlAk-xgBDNweXZ3jsKOn2nnTZk-7Jk-7oSZa9OyZf-h3Yk-jJhAx8OAD30PshGgeTgROWTRRcCk7LfONVpuX_041Leu9X45cpZSk5SPd9nib8Z_N_AEs2vro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425627084</pqid></control><display><type>article</type><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</creator><creatorcontrib>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</creatorcontrib><description>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly­(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c00958</identifier><identifier>PMID: 32436691</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Biodegradability ; Biodegradation ; Blood plasma ; Caprolactam - analogs &amp; derivatives ; Caprolactam - chemistry ; Catalysis ; Catalysts ; Chemical reduction ; Chemistry ; Chemistry, Analytical ; Clonidine - analogs &amp; derivatives ; Clonidine - analysis ; Clonidine - chemistry ; Electrochemical analysis ; Electrochemical Techniques - methods ; Electrochemistry ; Electrodes ; Electron transfer ; Graphene ; Graphite - chemistry ; Hydrophilicity ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Limit of Detection ; N-vinylcaprolactam ; Nanocomposites - chemistry ; Palladium ; Palladium - chemistry ; Pharmacokinetics ; Physical Sciences ; Polymers - chemistry ; Reproducibility of Results ; Science &amp; Technology ; Sensitivity enhancement ; Surface Properties ; Synergistic effect ; Temperature ; Tethering ; Wettability</subject><ispartof>Analytical chemistry (Washington), 2020-07, Vol.92 (13), p.8965-8973</ispartof><rights>Copyright American Chemical Society Jul 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548541200046</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</citedby><cites>FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</cites><orcidid>0000-0003-4264-7913 ; 0000-0002-9305-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c00958$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c00958$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32436691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mutharani, Bhuvanenthiran</creatorcontrib><creatorcontrib>Ranganathan, Palraj</creatorcontrib><creatorcontrib>Chen, Tse-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>vinoth kumar, Jeyaraj</creatorcontrib><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><title>Analytical chemistry (Washington)</title><addtitle>ANAL CHEM</addtitle><addtitle>Anal. Chem</addtitle><description>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly­(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Blood plasma</subject><subject>Caprolactam - analogs &amp; derivatives</subject><subject>Caprolactam - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Clonidine - analogs &amp; derivatives</subject><subject>Clonidine - analysis</subject><subject>Clonidine - chemistry</subject><subject>Electrochemical analysis</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hydrophilicity</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Limit of Detection</subject><subject>N-vinylcaprolactam</subject><subject>Nanocomposites - chemistry</subject><subject>Palladium</subject><subject>Palladium - chemistry</subject><subject>Pharmacokinetics</subject><subject>Physical Sciences</subject><subject>Polymers - chemistry</subject><subject>Reproducibility of Results</subject><subject>Science &amp; Technology</subject><subject>Sensitivity enhancement</subject><subject>Surface Properties</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Tethering</subject><subject>Wettability</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV2P1CAUhonRuOPqPzCGxEvTEQq0cKnNuppssman9w2F0wxrp1Sg--GP8bfKOLNzabwCDs97vl6E3lKypqSkH7WJaz3p0WxhtyaGECXkM7SioiRFJWX5HK0IIawoa0LO0KsYbwmhlNDqJTpjJWdVpegK_W63EHY-wB2E6PoR8ObeJbMd3Q_AFyOYFLzRSY-PyRl8A3YxyfkJ-wG37peenHUT4M86gsU5rPFl0PMWcuz6wVnALaRcIH9uktstoytuIM5-iu4uV9rpkPBmCYM2-bXMsw8po98tbv6WjOk1ejHoMcKb43mO2i8XbfO1uLq-_NZ8uio0q6tUUGUZL2vKpBBQEa562RNgSlohjRgGZZSyoiJyqAWjTNWmV0xaQ01f91yyc_T-kHYO_ucCMXW3fgl5ubEreSmqvEPJM8UPlAk-xgBDNweXZ3jsKOn2nnTZk-7Jk-7oSZa9OyZf-h3Yk-jJhAx8OAD30PshGgeTgROWTRRcCk7LfONVpuX_041Leu9X45cpZSk5SPd9nib8Z_N_AEs2vro</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Mutharani, Bhuvanenthiran</creator><creator>Ranganathan, Palraj</creator><creator>Chen, Tse-Wei</creator><creator>Chen, Shen-Ming</creator><creator>vinoth kumar, Jeyaraj</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4264-7913</orcidid><orcidid>https://orcid.org/0000-0002-9305-8513</orcidid></search><sort><creationdate>20200707</creationdate><title>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</title><author>Mutharani, Bhuvanenthiran ; Ranganathan, Palraj ; Chen, Tse-Wei ; Chen, Shen-Ming ; vinoth kumar, Jeyaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-19d342713855e6049b8b0e398d58c5ff9c99d5608f7531397cb938dc1cb7b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Blood plasma</topic><topic>Caprolactam - analogs &amp; derivatives</topic><topic>Caprolactam - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Clonidine - analogs &amp; derivatives</topic><topic>Clonidine - analysis</topic><topic>Clonidine - chemistry</topic><topic>Electrochemical analysis</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hydrophilicity</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Limit of Detection</topic><topic>N-vinylcaprolactam</topic><topic>Nanocomposites - chemistry</topic><topic>Palladium</topic><topic>Palladium - chemistry</topic><topic>Pharmacokinetics</topic><topic>Physical Sciences</topic><topic>Polymers - chemistry</topic><topic>Reproducibility of Results</topic><topic>Science &amp; Technology</topic><topic>Sensitivity enhancement</topic><topic>Surface Properties</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Tethering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mutharani, Bhuvanenthiran</creatorcontrib><creatorcontrib>Ranganathan, Palraj</creatorcontrib><creatorcontrib>Chen, Tse-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>vinoth kumar, Jeyaraj</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mutharani, Bhuvanenthiran</au><au>Ranganathan, Palraj</au><au>Chen, Tse-Wei</au><au>Chen, Shen-Ming</au><au>vinoth kumar, Jeyaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst</atitle><jtitle>Analytical chemistry (Washington)</jtitle><stitle>ANAL CHEM</stitle><addtitle>Anal. Chem</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>92</volume><issue>13</issue><spage>8965</spage><epage>8973</epage><pages>8965-8973</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In this work, a graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was developed by tethering biodegradable and hydrophilic poly­(N-vinylcaprolactam) (PVCL) on a GRO (i.e., GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (i.e., Pd/GRO-PVCL) was then prepared for tizanidine (TZN) electroreduction. The impact of a temperature-sensitive smart surface on the electrochemical and electrocatalytic properties was examined. Moreover, when the large surface area, excellent electron transfer, and electrochemical catalysis abilities of GRO were combined with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. Results designated that GRO-PVCL exposed the hydrophilic surface at 20 °C, resulting in Pd NPs highly dispersed on the GRO-PVCL surface. Subsequently, the wettability of the Pd catalyst surface arbitrarily adapted to hydrophobicity at 40 °C, which highly enhanced the TZN reduction on the catalyst in electrochemical detection. The synergistic effect amid Pd and GRO-PVCL on Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 μM with a low detection limit of 0.0015 μM at 40 °C. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. Lastly, the modified electrode attained good recovery results in human urine and human plasma samples for the determination of TZN and also pharmacokinetics study in rat plasma.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32436691</pmid><doi>10.1021/acs.analchem.0c00958</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4264-7913</orcidid><orcidid>https://orcid.org/0000-0002-9305-8513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-07, Vol.92 (13), p.8965-8973
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2425627084
source MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Biodegradability
Biodegradation
Blood plasma
Caprolactam - analogs & derivatives
Caprolactam - chemistry
Catalysis
Catalysts
Chemical reduction
Chemistry
Chemistry, Analytical
Clonidine - analogs & derivatives
Clonidine - analysis
Clonidine - chemistry
Electrochemical analysis
Electrochemical Techniques - methods
Electrochemistry
Electrodes
Electron transfer
Graphene
Graphite - chemistry
Hydrophilicity
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Limit of Detection
N-vinylcaprolactam
Nanocomposites - chemistry
Palladium
Palladium - chemistry
Pharmacokinetics
Physical Sciences
Polymers - chemistry
Reproducibility of Results
Science & Technology
Sensitivity enhancement
Surface Properties
Synergistic effect
Temperature
Tethering
Wettability
title Thermoreversible Switchlike Electrocatalytic Reduction of Tizanidine Based on a Graphene Oxide Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoreversible%20Switchlike%20Electrocatalytic%20Reduction%20of%20Tizanidine%20Based%20on%20a%20Graphene%20Oxide%20Tethered%20Stimuli-Responsive%20Smart%20Surface%20Supported%20Pd%20Catalyst&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mutharani,%20Bhuvanenthiran&rft.date=2020-07-07&rft.volume=92&rft.issue=13&rft.spage=8965&rft.epage=8973&rft.pages=8965-8973&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c00958&rft_dat=%3Cproquest_acs_j%3E2425627084%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425627084&rft_id=info:pmid/32436691&rfr_iscdi=true