A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity
In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration on any minimal symplectic filling of the link of non-cyclic quotient surface singularities. As a byproduct, we also show that any minimal symplectic filling of the link of quotient surface singularities can be...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2020-08, Vol.295 (3-4), p.1183-1204, Article 1183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1204 |
---|---|
container_issue | 3-4 |
container_start_page | 1183 |
container_title | Mathematische Zeitschrift |
container_volume | 295 |
creator | Choi, Hakho Park, Jongil |
description | In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration on any minimal symplectic filling of the link of non-cyclic quotient surface singularities. As a byproduct, we also show that any minimal symplectic filling of the link of quotient surface singularities can be obtained from a sequence of rational blowdowns from its minimal resolution. |
doi_str_mv | 10.1007/s00209-019-02387-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425622962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425622962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a1fcd595f95efc85c9b08507d4a439368b7fb18f58b7dea4dc7f852812bf34b3</originalsourceid><addsrcrecordid>eNp9kMtqAyEUhqW00DTtC3QldG3rdXSWIfQGgW5Ct-I4mhomM4k6i_TpazuFQhcBReE_3zn6AXBL8D3BWD4kjCmuESZlU6Ykqs7AjHBGEVGUnYNZyQUSSvJLcJXSFuMSSj4D7wu4cj7ZD5c_oQ9NNDkMPSxrF_qwMx1Mx92-czYHW_KuC_0mwcFDAw_jkIPrM0xj9MY6mEo2diaGfLwGF950yd38nnOwfnpcL1_Q6u35dblYIctInZEh3raiFr4WzlslbN1gJbBsueGsZpVqpG-I8qJcWmd4a6VXgipCG894w-bgbmq7j8NhdCnr7TDGvkzUlFNRUVpXtFTRqcrGIaXovN7H8rV41ATrb3160qeLPv2jT1cFUv8gG_KPnBxN6E6jbEJTmdNvXPx71QnqC7kohd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425622962</pqid></control><display><type>article</type><title>A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity</title><source>SpringerLink Journals</source><creator>Choi, Hakho ; Park, Jongil</creator><creatorcontrib>Choi, Hakho ; Park, Jongil</creatorcontrib><description>In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration on any minimal symplectic filling of the link of non-cyclic quotient surface singularities. As a byproduct, we also show that any minimal symplectic filling of the link of quotient surface singularities can be obtained from a sequence of rational blowdowns from its minimal resolution.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-019-02387-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Quotients ; Singularity (mathematics)</subject><ispartof>Mathematische Zeitschrift, 2020-08, Vol.295 (3-4), p.1183-1204, Article 1183</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a1fcd595f95efc85c9b08507d4a439368b7fb18f58b7dea4dc7f852812bf34b3</citedby><cites>FETCH-LOGICAL-c319t-a1fcd595f95efc85c9b08507d4a439368b7fb18f58b7dea4dc7f852812bf34b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-019-02387-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-019-02387-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Choi, Hakho</creatorcontrib><creatorcontrib>Park, Jongil</creatorcontrib><title>A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration on any minimal symplectic filling of the link of non-cyclic quotient surface singularities. As a byproduct, we also show that any minimal symplectic filling of the link of quotient surface singularities can be obtained from a sequence of rational blowdowns from its minimal resolution.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><subject>Singularity (mathematics)</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqAyEUhqW00DTtC3QldG3rdXSWIfQGgW5Ct-I4mhomM4k6i_TpazuFQhcBReE_3zn6AXBL8D3BWD4kjCmuESZlU6Ykqs7AjHBGEVGUnYNZyQUSSvJLcJXSFuMSSj4D7wu4cj7ZD5c_oQ9NNDkMPSxrF_qwMx1Mx92-czYHW_KuC_0mwcFDAw_jkIPrM0xj9MY6mEo2diaGfLwGF950yd38nnOwfnpcL1_Q6u35dblYIctInZEh3raiFr4WzlslbN1gJbBsueGsZpVqpG-I8qJcWmd4a6VXgipCG894w-bgbmq7j8NhdCnr7TDGvkzUlFNRUVpXtFTRqcrGIaXovN7H8rV41ATrb3160qeLPv2jT1cFUv8gG_KPnBxN6E6jbEJTmdNvXPx71QnqC7kohd0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Choi, Hakho</creator><creator>Park, Jongil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity</title><author>Choi, Hakho ; Park, Jongil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a1fcd595f95efc85c9b08507d4a439368b7fb18f58b7dea4dc7f852812bf34b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Hakho</creatorcontrib><creatorcontrib>Park, Jongil</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Hakho</au><au>Park, Jongil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>295</volume><issue>3-4</issue><spage>1183</spage><epage>1204</epage><pages>1183-1204</pages><artnum>1183</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration on any minimal symplectic filling of the link of non-cyclic quotient surface singularities. As a byproduct, we also show that any minimal symplectic filling of the link of quotient surface singularities can be obtained from a sequence of rational blowdowns from its minimal resolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-019-02387-6</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2020-08, Vol.295 (3-4), p.1183-1204, Article 1183 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2425622962 |
source | SpringerLink Journals |
subjects | Mathematics Mathematics and Statistics Quotients Singularity (mathematics) |
title | A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lefschetz%20fibration%20on%20minimal%20symplectic%20fillings%20of%20a%20quotient%20surface%20singularity&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Choi,%20Hakho&rft.date=2020-08-01&rft.volume=295&rft.issue=3-4&rft.spage=1183&rft.epage=1204&rft.pages=1183-1204&rft.artnum=1183&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-019-02387-6&rft_dat=%3Cproquest_cross%3E2425622962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425622962&rft_id=info:pmid/&rfr_iscdi=true |