A Note on Categorification and Spherical Harmonics

Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the s l ( 2 , ℂ ) -action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2020-08, Vol.23 (4), p.1285-1295
Hauptverfasser: Arunasalam, Suntharan, Ciappara, Joshua, Nguyen, Diana M. H., Tan, Suo Jun, Yacobi, Oded
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 4
container_start_page 1285
container_title Algebras and representation theory
container_volume 23
creator Arunasalam, Suntharan
Ciappara, Joshua
Nguyen, Diana M. H.
Tan, Suo Jun
Yacobi, Oded
description Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the s l ( 2 , ℂ ) -action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the standard action of matrix units E ij ∈ g l ( n , ℂ ) on the polynomial ring.
doi_str_mv 10.1007/s10468-019-09886-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425622278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425622278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ed91d8b53724a3e8523de2f4362ad49bff7a50f2f199da13adbe6251a066158a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC52jy8meTYylqhaIHFbyF7CapW9rNmmwPfnujK3jz9IZhZh78ELqk5JoSUt9kSrhUmFCNiVZKYn6EZlTUgDWp9XHRrJga2NspOst5SwjRUtEZgkX1GEdfxb5a2tFvYupC19qxK4btXfU8vPtUjF21smkf-67N5-gk2F32F793jl7vbl-WK7x-un9YLta4ZVSP2DtNnWoEq4Fb5pUA5jwEziRYx3UTQm0FCRCo1s5SZl3jJQhqiZRUKMvm6GraHVL8OPg8mm08pL68NMBBSACoVUnBlGpTzDn5YIbU7W36NJSYbzZmYmMKG_PDxvBSYlMpl3C_8elv-p_WF74vZcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425622278</pqid></control><display><type>article</type><title>A Note on Categorification and Spherical Harmonics</title><source>SpringerNature Journals</source><creator>Arunasalam, Suntharan ; Ciappara, Joshua ; Nguyen, Diana M. H. ; Tan, Suo Jun ; Yacobi, Oded</creator><creatorcontrib>Arunasalam, Suntharan ; Ciappara, Joshua ; Nguyen, Diana M. H. ; Tan, Suo Jun ; Yacobi, Oded</creatorcontrib><description>Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the s l ( 2 , ℂ ) -action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the standard action of matrix units E ij ∈ g l ( n , ℂ ) on the polynomial ring.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-019-09886-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Associative Rings and Algebras ; Commutative Rings and Algebras ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Non-associative Rings and Algebras ; Polynomials ; Rings (mathematics) ; Spherical harmonics</subject><ispartof>Algebras and representation theory, 2020-08, Vol.23 (4), p.1285-1295</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ed91d8b53724a3e8523de2f4362ad49bff7a50f2f199da13adbe6251a066158a3</citedby><cites>FETCH-LOGICAL-c319t-ed91d8b53724a3e8523de2f4362ad49bff7a50f2f199da13adbe6251a066158a3</cites><orcidid>0000-0002-8330-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10468-019-09886-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10468-019-09886-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Arunasalam, Suntharan</creatorcontrib><creatorcontrib>Ciappara, Joshua</creatorcontrib><creatorcontrib>Nguyen, Diana M. H.</creatorcontrib><creatorcontrib>Tan, Suo Jun</creatorcontrib><creatorcontrib>Yacobi, Oded</creatorcontrib><title>A Note on Categorification and Spherical Harmonics</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the s l ( 2 , ℂ ) -action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the standard action of matrix units E ij ∈ g l ( n , ℂ ) on the polynomial ring.</description><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Non-associative Rings and Algebras</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Spherical harmonics</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOC52jy8meTYylqhaIHFbyF7CapW9rNmmwPfnujK3jz9IZhZh78ELqk5JoSUt9kSrhUmFCNiVZKYn6EZlTUgDWp9XHRrJga2NspOst5SwjRUtEZgkX1GEdfxb5a2tFvYupC19qxK4btXfU8vPtUjF21smkf-67N5-gk2F32F793jl7vbl-WK7x-un9YLta4ZVSP2DtNnWoEq4Fb5pUA5jwEziRYx3UTQm0FCRCo1s5SZl3jJQhqiZRUKMvm6GraHVL8OPg8mm08pL68NMBBSACoVUnBlGpTzDn5YIbU7W36NJSYbzZmYmMKG_PDxvBSYlMpl3C_8elv-p_WF74vZcg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Arunasalam, Suntharan</creator><creator>Ciappara, Joshua</creator><creator>Nguyen, Diana M. H.</creator><creator>Tan, Suo Jun</creator><creator>Yacobi, Oded</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8330-7424</orcidid></search><sort><creationdate>20200801</creationdate><title>A Note on Categorification and Spherical Harmonics</title><author>Arunasalam, Suntharan ; Ciappara, Joshua ; Nguyen, Diana M. H. ; Tan, Suo Jun ; Yacobi, Oded</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ed91d8b53724a3e8523de2f4362ad49bff7a50f2f199da13adbe6251a066158a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Non-associative Rings and Algebras</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arunasalam, Suntharan</creatorcontrib><creatorcontrib>Ciappara, Joshua</creatorcontrib><creatorcontrib>Nguyen, Diana M. H.</creatorcontrib><creatorcontrib>Tan, Suo Jun</creatorcontrib><creatorcontrib>Yacobi, Oded</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arunasalam, Suntharan</au><au>Ciappara, Joshua</au><au>Nguyen, Diana M. H.</au><au>Tan, Suo Jun</au><au>Yacobi, Oded</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Categorification and Spherical Harmonics</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>1285</spage><epage>1295</epage><pages>1285-1295</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>Using Khovanov’s categorification of the Weyl algebra, we investigate categorical structures arising from spherical harmonics. We categorify the s l ( 2 , ℂ ) -action on the polynomial ring in n variables, and use this to categorify certain simple Verma modules. On the way we also categorify the standard action of matrix units E ij ∈ g l ( n , ℂ ) on the polynomial ring.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-019-09886-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8330-7424</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2020-08, Vol.23 (4), p.1285-1295
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_2425622278
source SpringerNature Journals
subjects Associative Rings and Algebras
Commutative Rings and Algebras
Mathematical analysis
Mathematics
Mathematics and Statistics
Non-associative Rings and Algebras
Polynomials
Rings (mathematics)
Spherical harmonics
title A Note on Categorification and Spherical Harmonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Categorification%20and%20Spherical%20Harmonics&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Arunasalam,%20Suntharan&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=1285&rft.epage=1295&rft.pages=1285-1295&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-019-09886-4&rft_dat=%3Cproquest_cross%3E2425622278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425622278&rft_id=info:pmid/&rfr_iscdi=true