A New Approach to Simple Modules for Preprojective Algebras

The work of the first author on the moment map for representations of quivers included a classification of the possible dimension vectors of simple modules for deformed preprojective algebras. That classification was later used to solve an additive analogue of the Deligne-Simpson problem. The last s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2020-08, Vol.23 (4), p.1849-1860
Hauptverfasser: Crawley-Boevey, William, Hubery, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1860
container_issue 4
container_start_page 1849
container_title Algebras and representation theory
container_volume 23
creator Crawley-Boevey, William
Hubery, Andrew
description The work of the first author on the moment map for representations of quivers included a classification of the possible dimension vectors of simple modules for deformed preprojective algebras. That classification was later used to solve an additive analogue of the Deligne-Simpson problem. The last step in the proof of the classification involved some general position arguments; here we give a new approach which avoids such arguments.
doi_str_mv 10.1007/s10468-019-09916-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425622115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425622115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d62c69653967d1402dc0e239c8e12031efbdf12419c5a0925b1adc6916bfcf273</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GZaZs2eCqLX7B-gAreQpsm6y7dbU26iv_eaAVvnmZg3mdmeBg7RjhFgPwsIKSyEIBKgFIoBe6wCWY5CQW52o19UkihKHnZZwchrABAyQIn7Lzkd_aDl33vu8q88qHjj8t131p-2zXb1gbuOs8fvI3zlTXD8t3ysl3Y2lfhkO25qg326LdO2fPlxdPsWszvr25m5VwYymEQjSQjlcwSJfMGU6DGgKVEmcIiQYLW1Y1DSlGZrAJFWY1VEwmUtTOO8mTKTsa98Ye3rQ2DXnVbv4knNaWUSSLELKZoTBnfheCt071friv_qRH0tyQ9StJRkv6RpDFCyQiFGN4srP9b_Q_1BYMaaGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425622115</pqid></control><display><type>article</type><title>A New Approach to Simple Modules for Preprojective Algebras</title><source>SpringerLink_现刊</source><creator>Crawley-Boevey, William ; Hubery, Andrew</creator><creatorcontrib>Crawley-Boevey, William ; Hubery, Andrew</creatorcontrib><description>The work of the first author on the moment map for representations of quivers included a classification of the possible dimension vectors of simple modules for deformed preprojective algebras. That classification was later used to solve an additive analogue of the Deligne-Simpson problem. The last step in the proof of the classification involved some general position arguments; here we give a new approach which avoids such arguments.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-019-09916-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Associative Rings and Algebras ; Classification ; Commutative Rings and Algebras ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Modules ; Non-associative Rings and Algebras ; Vectors (mathematics)</subject><ispartof>Algebras and representation theory, 2020-08, Vol.23 (4), p.1849-1860</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d62c69653967d1402dc0e239c8e12031efbdf12419c5a0925b1adc6916bfcf273</cites><orcidid>0000-0002-4661-0221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10468-019-09916-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10468-019-09916-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Crawley-Boevey, William</creatorcontrib><creatorcontrib>Hubery, Andrew</creatorcontrib><title>A New Approach to Simple Modules for Preprojective Algebras</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>The work of the first author on the moment map for representations of quivers included a classification of the possible dimension vectors of simple modules for deformed preprojective algebras. That classification was later used to solve an additive analogue of the Deligne-Simpson problem. The last step in the proof of the classification involved some general position arguments; here we give a new approach which avoids such arguments.</description><subject>Associative Rings and Algebras</subject><subject>Classification</subject><subject>Commutative Rings and Algebras</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Non-associative Rings and Algebras</subject><subject>Vectors (mathematics)</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GZaZs2eCqLX7B-gAreQpsm6y7dbU26iv_eaAVvnmZg3mdmeBg7RjhFgPwsIKSyEIBKgFIoBe6wCWY5CQW52o19UkihKHnZZwchrABAyQIn7Lzkd_aDl33vu8q88qHjj8t131p-2zXb1gbuOs8fvI3zlTXD8t3ysl3Y2lfhkO25qg326LdO2fPlxdPsWszvr25m5VwYymEQjSQjlcwSJfMGU6DGgKVEmcIiQYLW1Y1DSlGZrAJFWY1VEwmUtTOO8mTKTsa98Ye3rQ2DXnVbv4knNaWUSSLELKZoTBnfheCt071friv_qRH0tyQ9StJRkv6RpDFCyQiFGN4srP9b_Q_1BYMaaGw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Crawley-Boevey, William</creator><creator>Hubery, Andrew</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4661-0221</orcidid></search><sort><creationdate>20200801</creationdate><title>A New Approach to Simple Modules for Preprojective Algebras</title><author>Crawley-Boevey, William ; Hubery, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d62c69653967d1402dc0e239c8e12031efbdf12419c5a0925b1adc6916bfcf273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associative Rings and Algebras</topic><topic>Classification</topic><topic>Commutative Rings and Algebras</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Non-associative Rings and Algebras</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crawley-Boevey, William</creatorcontrib><creatorcontrib>Hubery, Andrew</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crawley-Boevey, William</au><au>Hubery, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Simple Modules for Preprojective Algebras</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>1849</spage><epage>1860</epage><pages>1849-1860</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>The work of the first author on the moment map for representations of quivers included a classification of the possible dimension vectors of simple modules for deformed preprojective algebras. That classification was later used to solve an additive analogue of the Deligne-Simpson problem. The last step in the proof of the classification involved some general position arguments; here we give a new approach which avoids such arguments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-019-09916-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4661-0221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2020-08, Vol.23 (4), p.1849-1860
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_2425622115
source SpringerLink_现刊
subjects Associative Rings and Algebras
Classification
Commutative Rings and Algebras
Mathematical analysis
Mathematics
Mathematics and Statistics
Modules
Non-associative Rings and Algebras
Vectors (mathematics)
title A New Approach to Simple Modules for Preprojective Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Simple%20Modules%20for%20Preprojective%20Algebras&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Crawley-Boevey,%20William&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=1849&rft.epage=1860&rft.pages=1849-1860&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-019-09916-1&rft_dat=%3Cproquest_cross%3E2425622115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425622115&rft_id=info:pmid/&rfr_iscdi=true